In this paper we propose a general approach to define a many-valued preferential interpretation of gradual argumentation semantics. The approach allows for conditional reasoning over arguments and boolean combination of arguments, with respect to a class of gradual semantics, through the verification of graded (strict or defeasible) implications over a preferential interpretation. As a proof of concept, in the finitely-valued case, an Answer set Programming approach is proposed for conditional reasoning in a many-valued argumentation semantics of weighted argumentation graphs. The paper also develops and discusses a probabilistic semantics for gradual argumentation, which builds on the many-valued conditional semantics.