Abstract:Synthetic data (SD) have garnered attention as a privacy enhancing technology. Unfortunately, there is no standard for quantifying their degree of privacy protection. In this paper, we discuss proposed quantification approaches. This contributes to the development of SD privacy standards; stimulates multi-disciplinary discussion; and helps SD researchers make informed modeling and evaluation decisions.
Abstract:Synthetic data generation has recently gained widespread attention as a more reliable alternative to traditional data anonymization. The involved methods are originally developed for image synthesis. Hence, their application to the typically tabular and relational datasets from healthcare, finance and other industries is non-trivial. While substantial research has been devoted to the generation of realistic tabular datasets, the study of synthetic relational databases is still in its infancy. In this paper, we combine the variational autoencoder framework with graph neural networks to generate realistic synthetic relational databases. We then apply the obtained method to two publicly available databases in computational experiments. The results indicate that real databases' structures are accurately preserved in the resulting synthetic datasets, even for large datasets with advanced data types.