Abstract:This paper proposes to perform authorship analysis using the Fast Compression Distance (FCD), a similarity measure based on compression with dictionaries directly extracted from the written texts. The FCD computes a similarity between two documents through an effective binary search on the intersection set between the two related dictionaries. In the reported experiments the proposed method is applied to documents which are heterogeneous in style, written in five different languages and coming from different historical periods. Results are comparable to the state of the art and outperform traditional compression-based methods.
Abstract:Compression-based similarity measures are effectively employed in applications on diverse data types with a basically parameter-free approach. Nevertheless, there are problems in applying these techniques to medium-to-large datasets which have been seldom addressed. This paper proposes a similarity measure based on compression with dictionaries, the Fast Compression Distance (FCD), which reduces the complexity of these methods, without degradations in performance. On its basis a content-based color image retrieval system is defined, which can be compared to state-of-the-art methods based on invariant color features. Through the FCD a better understanding of compression-based techniques is achieved, by performing experiments on datasets which are larger than the ones analyzed so far in literature.