Abstract:Understanding the limitations and weaknesses of state-of-the-art models in artificial intelligence is crucial for their improvement and responsible application. In this research, we focus on CLIP, a model renowned for its integration of vision and language processing. Our objective is to uncover recurring problems and blind spots in CLIP's image comprehension. By delving into both the commonalities and disparities between CLIP and human image understanding, we augment our comprehension of these models' capabilities. Through our analysis, we reveal significant discrepancies in CLIP's interpretation of images compared to human perception, shedding light on areas requiring improvement. Our methodologies, the Discrepancy Analysis Framework (DAF) and the Transformative Caption Analysis for CLIP (TCAC), enable a comprehensive evaluation of CLIP's performance. We identify 14 systemic faults, including Action vs. Stillness confusion, Failure to identify the direction of movement or positioning of objects in the image, Hallucination of Water-like Features, Misattribution of Geographic Context, among others. By addressing these limitations, we lay the groundwork for the development of more accurate and nuanced image embedding models, contributing to advancements in artificial intelligence.
Abstract:Large language models (LLMs) and large visual language models (LVLMs) have been at the forefront of the artificial intelligence field, particularly for tasks like text generation, video captioning, and question-answering. Typically, it is more applicable to train these models on broader knowledge bases or datasets to increase generalizability, learn relationships between topics, and recognize patterns. Instead, we propose to provide instructional datasets specific to the task of each modality within a distinct domain and then fine-tune the parameters of the model using LORA. With our approach, we can eliminate all noise irrelevant to the given task while also ensuring that the model generates with enhanced precision. For this work, we use Video-LLaVA to generate recipes given cooking videos without transcripts. Video-LLaVA's multimodal architecture allows us to provide cooking images to its image encoder, cooking videos to its video encoder, and general cooking questions to its text encoder. Thus, we aim to remove all noise unrelated to cooking while improving our model's capabilities to generate specific ingredient lists and detailed instructions. As a result, our approach to fine-tuning Video-LLaVA leads to gains over the baseline Video-LLaVA by 2% on the YouCook2 dataset. While this may seem like a marginal increase, our model trains on an image instruction dataset 2.5% the size of Video-LLaVA's and a video instruction dataset 23.76% of Video-LLaVA's.
Abstract:In this research, we explore different ways to improve generative adversarial networks for video super-resolution tasks from a base single image super-resolution GAN model. Our primary objective is to identify potential techniques that enhance these models and to analyze which of these techniques yield the most significant improvements. We evaluate our results using Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM). Our findings indicate that the most effective techniques include temporal smoothing, long short-term memory (LSTM) layers, and a temporal loss function. The integration of these methods results in an 11.97% improvement in PSNR and an 8% improvement in SSIM compared to the baseline video super-resolution generative adversarial network (GAN) model. This substantial improvement suggests potential further applications to enhance current state-of-the-art models.