Abstract:Activation steering methods were shown to be effective in conditioning language model generation by additively intervening over models' intermediate representations. However, the evaluation of these techniques has so far been limited to single conditioning properties and synthetic settings. In this work, we conduct a comprehensive evaluation of various activation steering strategies, highlighting the property-dependent nature of optimal parameters to ensure a robust effect throughout generation. To address this issue, we propose Dynamic Activation Composition, an information-theoretic approach to modulate the steering intensity of one or more properties throughout generation. Our experiments on multi-property steering show that our method successfully maintains high conditioning while minimizing the impact of conditioning on generation fluency.
Abstract:Due to language models' propensity to generate toxic or hateful responses, several techniques were developed to align model generations with users' preferences. Despite the effectiveness of such methods in improving the safety of model interactions, their impact on models' internal processes is still poorly understood. In this work, we apply popular detoxification approaches to several language models and quantify their impact on the resulting models' prompt dependence using feature attribution methods. We evaluate the effectiveness of counter-narrative fine-tuning and compare it with reinforcement learning-driven detoxification, observing differences in prompt reliance between the two methods despite their similar detoxification performances.