Abstract:Given many copies of an unknown quantum state $\rho$, we consider the task of learning a classical description of its principal eigenstate. Namely, assuming that $\rho$ has an eigenstate $|\phi\rangle$ with (unknown) eigenvalue $\lambda > 1/2$, the goal is to learn a (classical shadows style) classical description of $|\phi\rangle$ which can later be used to estimate expectation values $\langle \phi |O| \phi \rangle$ for any $O$ in some class of observables. We consider the sample-complexity setting in which generating a copy of $\rho$ is expensive, but joint measurements on many copies of the state are possible. We present a protocol for this task scaling with the principal eigenvalue $\lambda$ and show that it is optimal within a space of natural approaches, e.g., applying quantum state purification followed by a single-copy classical shadows scheme. Furthermore, when $\lambda$ is sufficiently close to $1$, the performance of our algorithm is optimal--matching the sample complexity for pure state classical shadows.
Abstract:We study the sample complexity of the classical shadows task: what is the fewest number of copies of an unknown state you need to measure to predict expected values with respect to some class of observables? Large joint measurements are likely required in order to minimize sample complexity, but previous joint measurement protocols only work when the unknown state is pure. We present the first joint measurement protocol for classical shadows whose sample complexity scales with the rank of the unknown state. In particular we prove $\mathcal O(\sqrt{rB}/\epsilon^2)$ samples suffice, where $r$ is the rank of the state, $B$ is a bound on the squared Frobenius norm of the observables, and $\epsilon$ is the target accuracy. In the low-rank regime, this is a nearly quadratic advantage over traditional approaches that use single-copy measurements. We present several intermediate results that may be of independent interest: a solution to a new formulation of classical shadows that captures functions of non-identical input states; a generalization of a ``nice'' Schur basis used for optimal qubit purification and quantum majority vote; and a measurement strategy that allows us to use local symmetries in the Schur basis to avoid intractable Weingarten calculations in the analysis.
Abstract:We consider the classical shadows task for pure states in the setting of both joint and independent measurements. The task is to measure few copies of an unknown pure state $\rho$ in order to learn a classical description which suffices to later estimate expectation values of observables. Specifically, the goal is to approximate $\mathrm{Tr}(O \rho)$ for any Hermitian observable $O$ to within additive error $\epsilon$ provided $\mathrm{Tr}(O^2)\leq B$ and $\lVert O \rVert = 1$. Our main result applies to the joint measurement setting, where we show $\tilde{\Theta}(\sqrt{B}\epsilon^{-1} + \epsilon^{-2})$ samples of $\rho$ are necessary and sufficient to succeed with high probability. The upper bound is a quadratic improvement on the previous best sample complexity known for this problem. For the lower bound, we see that the bottleneck is not how fast we can learn the state but rather how much any classical description of $\rho$ can be compressed for observable estimation. In the independent measurement setting, we show that $\mathcal O(\sqrt{Bd} \epsilon^{-1} + \epsilon^{-2})$ samples suffice. Notably, this implies that the random Clifford measurements algorithm of Huang, Kueng, and Preskill, which is sample-optimal for mixed states, is not optimal for pure states. Interestingly, our result also uses the same random Clifford measurements but employs a different estimator.