Abstract:Given many copies of an unknown quantum state $\rho$, we consider the task of learning a classical description of its principal eigenstate. Namely, assuming that $\rho$ has an eigenstate $|\phi\rangle$ with (unknown) eigenvalue $\lambda > 1/2$, the goal is to learn a (classical shadows style) classical description of $|\phi\rangle$ which can later be used to estimate expectation values $\langle \phi |O| \phi \rangle$ for any $O$ in some class of observables. We consider the sample-complexity setting in which generating a copy of $\rho$ is expensive, but joint measurements on many copies of the state are possible. We present a protocol for this task scaling with the principal eigenvalue $\lambda$ and show that it is optimal within a space of natural approaches, e.g., applying quantum state purification followed by a single-copy classical shadows scheme. Furthermore, when $\lambda$ is sufficiently close to $1$, the performance of our algorithm is optimal--matching the sample complexity for pure state classical shadows.
Abstract:We consider the classical shadows task for pure states in the setting of both joint and independent measurements. The task is to measure few copies of an unknown pure state $\rho$ in order to learn a classical description which suffices to later estimate expectation values of observables. Specifically, the goal is to approximate $\mathrm{Tr}(O \rho)$ for any Hermitian observable $O$ to within additive error $\epsilon$ provided $\mathrm{Tr}(O^2)\leq B$ and $\lVert O \rVert = 1$. Our main result applies to the joint measurement setting, where we show $\tilde{\Theta}(\sqrt{B}\epsilon^{-1} + \epsilon^{-2})$ samples of $\rho$ are necessary and sufficient to succeed with high probability. The upper bound is a quadratic improvement on the previous best sample complexity known for this problem. For the lower bound, we see that the bottleneck is not how fast we can learn the state but rather how much any classical description of $\rho$ can be compressed for observable estimation. In the independent measurement setting, we show that $\mathcal O(\sqrt{Bd} \epsilon^{-1} + \epsilon^{-2})$ samples suffice. Notably, this implies that the random Clifford measurements algorithm of Huang, Kueng, and Preskill, which is sample-optimal for mixed states, is not optimal for pure states. Interestingly, our result also uses the same random Clifford measurements but employs a different estimator.