Abstract:A vital component of trust and transparency in intelligent systems built on machine learning and artificial intelligence is the development of clear, understandable documentation. However, such systems are notorious for their complexity and opaqueness making quality documentation a non-trivial task. Furthermore, little is known about what makes such documentation "good." In this paper, we propose and evaluate a set of quality dimensions to identify in what ways this type of documentation falls short. Then, using those dimensions, we evaluate three different approaches for eliciting intelligent system documentation. We show how the dimensions identify shortcomings in such documentation and posit how such dimensions can be use to further enable users to provide documentation that is suitable to a given persona or use case.
Abstract:In this paper, we invest the domain transfer learning problem with multi-instance data. We assume we already have a well-trained multi-instance dictionary and its corresponding classifier from the source domain, which can be used to represent and classify the bags. But it cannot be directly used to the target domain. Thus we propose to adapt them to the target domain by adding an adaptive term to the source domain classifier. The adaptive function is a linear function based a domain transfer multi-instance dictionary. Given a target domain bag, we first map it to a bag-level feature space using the domain transfer dictionary, and then apply a the linear adaptive function to its bag-level feature vector. To learn the domain-transfer dictionary and the adaptive function parameter, we simultaneously minimize the average classification error of the target domain classifier over the target domain training set, and the complexities of both the adaptive function parameter and the domain transfer dictionary. The minimization problem is solved by an iterative algorithm which update the dictionary and the function parameter alternately. Experiments over several benchmark data sets show the advantage of the proposed method over existing state-of-the-art domain transfer multi-instance learning methods.