Abstract:Several fundamental problems that arise in optimization and computer science can be cast as follows: Given vectors $v_1,\ldots,v_m \in \mathbb{R}^d$ and a constraint family ${\cal B}\subseteq 2^{[m]}$, find a set $S \in \cal{B}$ that maximizes the squared volume of the simplex spanned by the vectors in $S$. A motivating example is the data-summarization problem in machine learning where one is given a collection of vectors that represent data such as documents or images. The volume of a set of vectors is used as a measure of their diversity, and partition or matroid constraints over $[m]$ are imposed in order to ensure resource or fairness constraints. Recently, Nikolov and Singh presented a convex program and showed how it can be used to estimate the value of the most diverse set when ${\cal B}$ corresponds to a partition matroid. This result was recently extended to regular matroids in works of Straszak and Vishnoi, and Anari and Oveis Gharan. The question of whether these estimation algorithms can be converted into the more useful approximation algorithms -- that also output a set -- remained open. The main contribution of this paper is to give the first approximation algorithms for both partition and regular matroids. We present novel formulations for the subdeterminant maximization problem for these matroids; this reduces them to the problem of finding a point that maximizes the absolute value of a nonconvex function over a Cartesian product of probability simplices. The technical core of our results is a new anti-concentration inequality for dependent random variables that allows us to relate the optimal value of these nonconvex functions to their value at a random point. Unlike prior work on the constrained subdeterminant maximization problem, our proofs do not rely on real-stability or convexity and could be of independent interest both in algorithms and complexity.
Abstract:Sampling methods that choose a subset of the data proportional to its diversity in the feature space are popular for data summarization. However, recent studies have noted the occurrence of bias (under- or over-representation of a certain gender or race) in such data summarization methods. In this paper we initiate a study of the problem of outputting a diverse and fair summary of a given dataset. We work with a well-studied determinantal measure of diversity and corresponding distributions (DPPs) and present a framework that allows us to incorporate a general class of fairness constraints into such distributions. Coming up with efficient algorithms to sample from these constrained determinantal distributions, however, suffers from a complexity barrier and we present a fast sampler that is provably good when the input vectors satisfy a natural property. Our experimental results on a real-world and an image dataset show that the diversity of the samples produced by adding fairness constraints is not too far from the unconstrained case, and we also provide a theoretical explanation of it.
Abstract:We study the problem of computing the maximum entropy distribution with a specified expectation over a large discrete domain. Maximum entropy distributions arise and have found numerous applications in economics, machine learning and various sub-disciplines of mathematics and computer science. The key computational questions related to maximum entropy distributions are whether they have succinct descriptions and whether they can be efficiently computed. Here we provide positive answers to both of these questions for very general domains and, importantly, with no restriction on the expectation. This completes the picture left open by the prior work on this problem which requires that the expectation vector is polynomially far in the interior of the convex hull of the domain. As a consequence we obtain a general algorithmic tool and show how it can be applied to derive several old and new results in a unified manner. In particular, our results imply that certain recent continuous optimization formulations, for instance, for discrete counting and optimization problems, the matrix scaling problem, and the worst case Brascamp-Lieb constants in the rank-1 regime, are efficiently computable. Attaining these implications requires reformulating the underlying problem as a version of maximum entropy computation where optimization also involves the expectation vector and, hence, cannot be assumed to be sufficiently deep in the interior. The key new technical ingredient in our work is a polynomial bound on the bit complexity of near-optimal dual solutions to the maximum entropy convex program. This result is obtained by a geometrical reasoning that involves convex analysis and polyhedral geometry, avoiding combinatorial arguments based on the specific structure of the domain. We also provide a lower bound on the bit complexity of near-optimal solutions showing the tightness of our results.
Abstract:Factor graphs are important models for succinctly representing probability distributions in machine learning, coding theory, and statistical physics. Several computational problems, such as computing marginals and partition functions, arise naturally when working with factor graphs. Belief propagation is a widely deployed iterative method for solving these problems. However, despite its significant empirical success, not much is known about the correctness and efficiency of belief propagation. Bethe approximation is an optimization-based framework for approximating partition functions. While it is known that the stationary points of the Bethe approximation coincide with the fixed points of belief propagation, in general, the relation between the Bethe approximation and the partition function is not well understood. It has been observed that for a few classes of factor graphs, the Bethe approximation always gives a lower bound to the partition function, which distinguishes them from the general case, where neither a lower bound, nor an upper bound holds universally. This has been rigorously proved for permanents and for attractive graphical models. Here we consider bipartite normal factor graphs and show that if the local constraints satisfy a certain analytic property, the Bethe approximation is a lower bound to the partition function. We arrive at this result by viewing factor graphs through the lens of polynomials. In this process, we reformulate the Bethe approximation as a polynomial optimization problem. Our sufficient condition for the lower bound property to hold is inspired by recent developments in the theory of real stable polynomials. We believe that this way of viewing factor graphs and its connection to real stability might lead to a better understanding of belief propagation and factor graphs in general.
Abstract:Determinantal Point Processes (DPPs) are probabilistic models that arise in quantum physics and random matrix theory and have recently found numerous applications in computer science. DPPs define distributions over subsets of a given ground set, they exhibit interesting properties such as negative correlation, and, unlike other models, have efficient algorithms for sampling. When applied to kernel methods in machine learning, DPPs favor subsets of the given data with more diverse features. However, many real-world applications require efficient algorithms to sample from DPPs with additional constraints on the subset, e.g., partition or matroid constraints that are important to ensure priors, resource or fairness constraints on the sampled subset. Whether one can efficiently sample from DPPs in such constrained settings is an important problem that was first raised in a survey of DPPs by \cite{KuleszaTaskar12} and studied in some recent works in the machine learning literature. The main contribution of our paper is the first resolution of the complexity of sampling from DPPs with constraints. We give exact efficient algorithms for sampling from constrained DPPs when their description is in unary. Furthermore, we prove that when the constraints are specified in binary, this problem is #P-hard via a reduction from the problem of computing mixed discriminants implying that it may be unlikely that there is an FPRAS. Our results benefit from viewing the constrained sampling problem via the lens of polynomials. Consequently, we obtain a few algorithms of independent interest: 1) to count over the base polytope of regular matroids when there are additional (succinct) budget constraints and, 2) to evaluate and compute the mixed characteristic polynomials, that played a central role in the resolution of the Kadison-Singer problem, for certain special cases.
Abstract:In this paper we present a connection between two dynamical systems arising in entirely different contexts: one in signal processing and the other in biology. The first is the famous Iteratively Reweighted Least Squares (IRLS) algorithm used in compressed sensing and sparse recovery while the second is the dynamics of a slime mold (Physarum polycephalum). Both of these dynamics are geared towards finding a minimum l1-norm solution in an affine subspace. Despite its simplicity the convergence of the IRLS method has been shown only for a certain regularization of it and remains an important open problem. Our first result shows that the two dynamics are projections of the same dynamical system in higher dimensions. As a consequence, and building on the recent work on Physarum dynamics, we are able to prove convergence and obtain complexity bounds for a damped version of the IRLS algorithm.