Abstract:Model editing aims to correct inaccurate knowledge, update outdated information, and incorporate new data into Large Language Models (LLMs) without the need for retraining. This task poses challenges in lifelong scenarios where edits must be continuously applied for real-world applications. While some editors demonstrate strong robustness for lifelong editing in pure LLMs, Vision LLMs (VLLMs), which incorporate an additional vision modality, are not directly adaptable to existing LLM editors. In this paper, we propose LiveEdit, a LIfelong Vision language modEl Edit to bridge the gap between lifelong LLM editing and VLLMs. We begin by training an editing expert generator to independently produce low-rank experts for each editing instance, with the goal of correcting the relevant responses of the VLLM. A hard filtering mechanism is developed to utilize visual semantic knowledge, thereby coarsely eliminating visually irrelevant experts for input queries during the inference stage of the post-edited model. Finally, to integrate visually relevant experts, we introduce a soft routing mechanism based on textual semantic relevance to achieve multi-expert fusion. For evaluation, we establish a benchmark for lifelong VLLM editing. Extensive experiments demonstrate that LiveEdit offers significant advantages in lifelong VLLM editing scenarios. Further experiments validate the rationality and effectiveness of each module design in LiveEdit.
Abstract:Model editing aims to correct outdated or erroneous knowledge in large models without costly retraining. Recent research discovered that the mid-layer representation of the subject's final token in a prompt has a strong influence on factual predictions, and developed Large Language Model (LLM) editing techniques based on this observation. However, for Vision-LLMs (VLLMs), how visual representations impact the predictions from a decoder-only language model remains largely unexplored. To the best of our knowledge, model editing for VLLMs has not been extensively studied in the literature. In this work, we employ the contribution allocation and noise perturbation methods to measure the contributions of visual representations for token predictions. Our attribution analysis shows that visual representations in mid-to-later layers that are highly relevant to the prompt contribute significantly to predictions. Based on these insights, we propose VisEdit, a novel model editor for VLLMs that effectively corrects knowledge by editing intermediate visual representations in regions important to the edit prompt. We evaluated VisEdit using multiple VLLM backbones and public VLLM editing benchmark datasets. The results show the superiority of VisEdit over the strong baselines adapted from existing state-of-the-art editors for LLMs.