Abstract:Adaptive questionnaires dynamically select the next question for a survey participant based on their previous answers. Due to digitalisation, they have become a viable alternative to traditional surveys in application areas such as political science. One limitation, however, is their dependency on data to train the model for question selection. Often, such training data (i.e., user interactions) are unavailable a priori. To address this problem, we (i) test whether Large Language Models (LLM) can accurately generate such interaction data and (ii) explore if these synthetic data can be used to pre-train the statistical model of an adaptive political survey. To evaluate this approach, we utilise existing data from the Swiss Voting Advice Application (VAA) Smartvote in two ways: First, we compare the distribution of LLM-generated synthetic data to the real distribution to assess its similarity. Second, we compare the performance of an adaptive questionnaire that is randomly initialised with one pre-trained on synthetic data to assess their suitability for training. We benchmark these results against an "oracle" questionnaire with perfect prior knowledge. We find that an off-the-shelf LLM (GPT-4) accurately generates answers to the Smartvote questionnaire from the perspective of different Swiss parties. Furthermore, we demonstrate that initialising the statistical model with synthetic data can (i) significantly reduce the error in predicting user responses and (ii) increase the candidate recommendation accuracy of the VAA. Our work emphasises the considerable potential of LLMs to create training data to improve the data collection process in adaptive questionnaires in LLM-affine areas such as political surveys.
Abstract:Machine learning has seen an increase in negative publicity in recent years, due to biased, unfair, and uninterpretable models. There is a rising interest in making machine learning models more fair for unprivileged communities, such as women or people of color. Metrics are needed to evaluate the fairness of a model. A novel metric for evaluating fairness between groups is Burden, which uses counterfactuals to approximate the average distance of negatively classified individuals in a group to the decision boundary of the model. The goal of this study is to compare Burden to statistical parity, a well-known fairness metric, and discover Burden's advantages and disadvantages. We do this by calculating the Burden and statistical parity of a sensitive attribute in three datasets: two synthetic datasets are created to display differences between the two metrics, and one real-world dataset is used. We show that Burden can show unfairness where statistical parity can not, and that the two metrics can even disagree on which group is treated unfairly. We conclude that Burden is a valuable metric, but does not replace statistical parity: it rather is valuable to use both.