Abstract:Ocean fronts can cause the accumulation of nutrients and affect the propagation of underwater sound, so high-precision ocean front detection is of great significance to the marine fishery and national defense fields. However, the current ocean front detection methods either have low detection accuracy or most can only detect the occurrence of ocean front by binary classification, rarely considering the differences of the characteristics of multiple ocean fronts in different sea areas. In order to solve the above problems, we propose a semantic segmentation network called location and seasonality enhanced network (LSENet) for multi-class ocean fronts detection at pixel level. In this network, we first design a channel supervision unit structure, which integrates the seasonal characteristics of the ocean front itself and the contextual information to improve the detection accuracy. We also introduce a location attention mechanism to adaptively assign attention weights to the fronts according to their frequently occurred sea area, which can further improve the accuracy of multi-class ocean front detection. Compared with other semantic segmentation methods and current representative ocean front detection method, the experimental results demonstrate convincingly that our method is more effective.
Abstract:The ocean front has an important impact in many areas, it is meaningful to obtain accurate ocean front positioning, therefore, ocean front detection is a very important task. However, the traditional edge detection algorithm does not detect the weak edge information of the ocean front very well. In response to this problem, we collected relevant ocean front gradient images and found relevant experts to calibrate the ocean front data to obtain groundtruth, and proposed a weak edge identification nets(WEIN) for ocean front detection. Whether it is qualitative or quantitative, our methods perform best. The method uses a welltrained deep learning model to accurately extract the ocean front from the ocean front gradient image. The detection network is divided into multiple stages, and the final output is a multi-stage output image fusion. The method uses the stochastic gradient descent and the correlation loss function to obtain a good ocean front image output.