Abstract:Pinterest is a popular Web application that has over 250 million active users. It is a visual discovery engine for finding ideas for recipes, fashion, weddings, home decoration, and much more. In the last year, the company adopted Semantic Web technologies to create a knowledge graph that aims to represent the vast amount of content and users on Pinterest, to help both content recommendation and ads targeting. In this paper, we present the engineering of an OWL ontology---the Pinterest Taxonomy---that forms the core of Pinterest's knowledge graph, the Pinterest Taste Graph. We describe modeling choices and enhancements to WebProt\'eg\'e that we used for the creation of the ontology. In two months, eight Pinterest engineers, without prior experience of OWL and WebProt\'eg\'e, revamped an existing taxonomy of noisy terms into an OWL ontology. We share our experience and present the key aspects of our work that we believe will be useful for others working in this area.
Abstract:We present WebProt\'eg\'e, a tool to develop ontologies represented in the Web Ontology Language (OWL). WebProt\'eg\'e is a cloud-based application that allows users to collaboratively edit OWL ontologies, and it is available for use at https://webprotege.stanford.edu. WebProt\'ege\'e currently hosts more than 68,000 OWL ontology projects and has over 50,000 user accounts. In this paper, we detail the main new features of the latest version of WebProt\'eg\'e.