Abstract:Research ultrasound scanners such as the Verasonics Vantage often lack the advanced image processing algorithms used by clinical systems. Image quality is even lower in plane wave imaging - often used for shear wave elasticity imaging (SWEI) - which sacrifices spatial resolution for temporal resolution. As a result, delay-and-summed images acquired from SWEI have limited interpretability. In this project, a two-stage machine learning model was trained to enhance single plane wave images of muscle acquired with a Verasonics Vantage system. The first stage of the model consists of a U-Net trained to emulate plane wave compounding, histogram matching, and unsharp masking using paired images. The second stage consists of a CycleGAN trained to emulate clinical muscle B-modes using unpaired images. This two-stage model was implemented on the Verasonics Vantage research ultrasound scanner, and its ability to provide high-speed image formation at a frame rate of 28.5 +/- 0.6 FPS from a single plane wave transmit was demonstrated. A reader study with two physicians demonstrated that these processed images had significantly greater structural fidelity and less speckle than the original plane wave images.