Abstract:We present a robust theoretical framework for the characterisation and manipulation of optical flow, i.e 2D vector fields, in the context of their use in motion estimation algorithms and beyond. The definition of two frames of reference guides the mathematical derivation of flow field application, inversion, evaluation, and composition operations. This structured approach is then used as the foundation for an implementation in Python 3, with the fully differentiable PyTorch version oflibpytorch supporting back-propagation as required for deep learning. We verify the flow composition method empirically and provide a working example for its application to optical flow ground truth in synthetic training data creation. All code is publicly available.
Abstract:Our work proposes neural network design choices that set the state-of-the-art on a challenging public benchmark on cataract surgery, CaDIS. Our methodology achieves strong performance across three semantic segmentation tasks with increasingly granular surgical tool class sets by effectively handling class imbalance, an inherent challenge in any surgical video. We consider and evaluate two conceptually simple data oversampling methods as well as different loss functions. We show significant performance gains across network architectures and tasks especially on the rarest tool classes, thereby presenting an approach for achieving high performance when imbalanced granular datasets are considered. Our code and trained models are available at https://github.com/RViMLab/MICCAI2021_Cataract_semantic_segmentation and qualitative results on unseen surgical video can be found at https://youtu.be/twVIPUj1WZM.