Abstract:The transport literature is dense regarding short-term traffic predictions, up to the scale of 1 hour, yet less dense for long-term traffic predictions. The transport literature is also sparse when it comes to city-scale traffic predictions, mainly because of low data availability. The main question we try to answer in this work is to which extent the approaches used for short-term prediction at a link level can be scaled up for long-term prediction at a city scale. We investigate a city-scale traffic dataset with 14 weeks of speed observations collected every 15 minutes over 1098 segments in the hypercenter of Los Angeles, California. We look at a variety of machine learning and deep learning predictors for link-based predictions, and investigate ways to make such predictors scale up for larger areas, with brute force, clustering, and model design approaches. In particular we propose a novel deep learning spatio-temporal predictor inspired from recent works on recommender systems. We discuss the potential of including spatio-temporal features into the predictors, and conclude that modelling such features can be helpful for long-term predictions, while simpler predictors achieve very satisfactory performance for link-based and short-term forecasting. The trade-off is discussed not only in terms of prediction accuracy vs prediction horizon but also in terms of training time and model sizing.
Abstract:This paper surveys the machine learning literature and presents machine learning as optimization models. Such models can benefit from the advancement of numerical optimization techniques which have already played a distinctive role in several machine learning settings. Particularly, mathematical optimization models are presented for commonly used machine learning approaches for regression, classification, clustering, and deep neural networks as well new emerging applications in machine teaching and empirical model learning. The strengths and the shortcomings of these models are discussed and potential research directions are highlighted.