Libre AI
Abstract:Neural Painters is a class of models that follows a GAN framework to generate brushstrokes, which are then composed to create paintings. GANs are great generative models for AI Art but they are known to be notoriously difficult to train. To overcome GAN's limitations and to speed up the Neural Painter training, we applied Transfer Learning to the process reducing it from days to only hours, while achieving the same level of visual aesthetics in the final paintings generated. We report our approach and results in this work.
Abstract:Newsletters have (re-) emerged as a powerful tool for publishers to engage with their readers directly and more effectively. Despite the diversity in their audiences, publishers' newsletters remain largely a one-size-fits-all offering, which is suboptimal. In this paper, we present NU:BRIEF, a web application for publishers that enables them to personalize their newsletters without harvesting personal data. Personalized newsletters build a habit and become a great conversion tool for publishers, providing an alternative readers-generated revenue model to a declining ad/clickbait-centered business model.
Abstract:We present a software tool that employs state-of-the-art natural language processing (NLP) and machine learning techniques to help newspaper editors compose effective headlines for online publication. The system identifies the most salient keywords in a news article and ranks them based on both their overall popularity and their direct relevance to the article. The system also uses a supervised regression model to identify headlines that are likely to be widely shared on social media. The user interface is designed to simplify and speed the editor's decision process on the composition of the headline. As such, the tool provides an efficient way to combine the benefits of automated predictors of engagement and search-engine optimization (SEO) with human judgments of overall headline quality.