Abstract:The rapid advancements in large language models (LLMs) have highlighted the challenge of context window limitations, primarily due to the quadratic time complexity of the self-attention mechanism (\(O(N^2)\), where \(N\) denotes the context window length). This constraint impacts tasks such as retrieval-augmented generation (RAG) in question answering (Q\&A) and long context summarization. A common approach involves selecting content with the highest similarity to the query; however, this often leads to redundancy and the exclusion of diverse yet relevant information. Building on principles from Maximal Marginal Relevance (MMR) and Farthest Point Sampling (FPS), we integrate diversity into the content selection process. Our findings reveal that incorporating diversity substantially increases the recall of selecting relevant sentences or chunks before LLM-based Q\&A and summarization. These results highlight the importance of maintaining diversity in future LLM applications to further improve summarization and Q\&A outcomes.
Abstract:LLMs have demonstrated impressive proficiency in generating coherent and high-quality text, making them valuable across a range of text-generation tasks. However, rigorous evaluation of this generated content is crucial, as ensuring its quality remains a significant challenge due to persistent issues such as factual inaccuracies and hallucinations. This paper introduces two fine-tuned general-purpose LLM autoevaluators, REC-12B and REC-70B, specifically designed to evaluate generated text across several dimensions: faithfulness, instruction following, coherence, and completeness. These models not only provide ratings for these metrics but also offer detailed explanations and verifiable citations, thereby enhancing trust in the content. Moreover, the models support various citation modes, accommodating different requirements for latency and granularity. Extensive evaluations on diverse benchmarks demonstrate that our general-purpose LLM auto-evaluator, REC-70B, outperforms state-of-the-art LLMs, excelling in content evaluation by delivering better quality explanations and citations with minimal bias. It achieves Rank \#1 as a generative model on the RewardBench leaderboard\footnote{\url{https://huggingface.co/spaces/allenai/reward-bench}} under the model name \texttt{TextEval-Llama3.1-70B}. Our REC dataset and models are released at \url{https://github.com/adelaidehsu/REC}.