Abstract:High-fidelity speech can be synthesized by end-to-end text-to-speech models in recent years. However, accessing and controlling speech attributes such as speaker identity, prosody, and emotion in a text-to-speech system remains a challenge. This paper presents a system involving feedback constraint for multispeaker speech synthesis. We manage to enhance the knowledge transfer from the speaker verification to the speech synthesis by engaging the speaker verification network. The constraint is taken by an added loss related to the speaker identity, which is centralized to improve the speaker similarity between the synthesized speech and its natural reference audio. The model is trained and evaluated on publicly available datasets. Experimental results, including visualization on speaker embedding space, show significant improvement in terms of speaker identity cloning in the spectrogram level. Synthesized samples are available online for listening. (https://caizexin.github.io/mlspk-syn-samples/index.html)
Abstract:This paper describes a conditional neural network architecture for Mandarin Chinese polyphone disambiguation. The system is composed of a bidirectional recurrent neural network component acting as a sentence encoder to accumulate the context correlations, followed by a prediction network that maps the polyphonic character embeddings along with the conditions to corresponding pronunciations. We obtain the word-level condition from a pre-trained word-to-vector lookup table. One goal of polyphone disambiguation is to address the homograph problem existing in the front-end processing of Mandarin Chinese text-to-speech system. Our system achieves an accuracy of 94.69\% on a publicly available polyphonic character dataset. To further validate our choices on the conditional feature, we investigate polyphone disambiguation systems with multi-level conditions respectively. The experimental results show that both the sentence-level and the word-level conditional embedding features are able to attain good performance for Mandarin Chinese polyphone disambiguation.