Abstract:Collections of biological specimens are fundamental to scientific understanding and characterization of natural diversity. This paper presents a system for liberating useful information from physical collections by bringing specimens into the digital domain so they can be more readily shared, analyzed, annotated and compared. It focuses on insects and is strongly motivated by the desire to accelerate and augment current practices in insect taxonomy which predominantly use text, 2D diagrams and images to describe and characterize species. While these traditional kinds of descriptions are informative and useful, they cannot cover insect specimens "from all angles" and precious specimens are still exchanged between researchers and collections for this reason. Furthermore, insects can be complex in structure and pose many challenges to computer vision systems. We present a new prototype for a practical, cost-effective system of off-the-shelf components to acquire natural-colour 3D models of insects from around 3mm to 30mm in length. Colour images are captured from different angles and focal depths using a digital single lens reflex (DSLR) camera rig and two-axis turntable. These 2D images are processed into 3D reconstructions using software based on a visual hull algorithm. The resulting models are compact (around 10 megabytes), afford excellent optical resolution, and can be readily embedded into documents and web pages, as well as viewed on mobile devices. The system is portable, safe, relatively affordable, and complements the sort of volumetric data that can be acquired by computed tomography. This system provides a new way to augment the description and documentation of insect species holotypes, reducing the need to handle or ship specimens. It opens up new opportunities to collect data for research, education, art, entertainment, biodiversity assessment and biosecurity control.
Abstract:Current self-driving car systems operate well in sunny weather but struggle in adverse conditions. One of the most commonly encountered adverse conditions involves water on the road caused by rain, sleet, melting snow or flooding. While some advances have been made in using conventional RGB camera and LIDAR technology for detecting water hazards, other sources of information such as polarization offer a promising and potentially superior approach to this problem in terms of performance and cost. In this paper, we present a novel stereo-polarization system for detecting and tracking water hazards based on polarization and color variation of reflected light, with consideration of the effect of polarized light from sky as function of reflection and azimuth angles. To evaluate this system, we present a new large `water on road' datasets spanning approximately 2 km of driving in various on-road and off-road conditions and demonstrate for the first time reliable water detection and tracking over a wide range of realistic car driving water conditions using polarized vision as the primary sensing modality. Our system successfully detects water hazards up to more than 100m. Finally, we discuss several interesting challenges and propose future research directions for further improving robust autonomous car perception in hazardous wet conditions using polarization sensors.