Abstract:In this work, we propose a novel consistency-preserving loss function for recovering the phase information in the context of phase reconstruction (PR) and speech enhancement (SE). Different from conventional techniques that directly estimate the phase using a deep model, our idea is to exploit ad-hoc constraints to directly generate a consistent pair of magnitude and phase. Specifically, the proposed loss forces a set of complex numbers to be a consistent short-time Fourier transform (STFT) representation, i.e., to be the spectrogram of a real signal. Our approach thus avoids the difficulty of estimating the original phase, which is highly unstructured and sensitive to time shift. The influence of our proposed loss is first assessed on a PR task, experimentally demonstrating that our approach is viable. Next, we show its effectiveness on an SE task, using both the VB-DMD and WSJ0-CHiME3 data sets. On VB-DMD, our approach is competitive with conventional solutions. On the challenging WSJ0-CHiME3 set, the proposed framework compares favourably over those techniques that explicitly estimate the phase.
Abstract:In this work, we devise a parameter-efficient solution to bring differential privacy (DP) guarantees into adaptation of a cross-lingual speech classifier. We investigate a new frozen pre-trained adaptation framework for DP-preserving speech modeling without full model fine-tuning. First, we introduce a noisy teacher-student ensemble into a conventional adaptation scheme leveraging a frozen pre-trained acoustic model and attain superior performance than DP-based stochastic gradient descent (DPSGD). Next, we insert residual adapters (RA) between layers of the frozen pre-trained acoustic model. The RAs reduce training cost and time significantly with a negligible performance drop. Evaluated on the open-access Multilingual Spoken Words (MLSW) dataset, our solution reduces the number of trainable parameters by 97.5% using the RAs with only a 4% performance drop with respect to fine-tuning the cross-lingual speech classifier while preserving DP guarantees.