Abstract:We consider the problem of distinguishing two vectors (visualized as images or barcodes) and learning if they are related to one another. For this, we develop a geometric quantum machine learning (GQML) approach with embedded symmetries that allows for the classification of similar and dissimilar pairs based on global correlations, and enables generalization from just a few samples. Unlike GQML algorithms developed to date, we propose to focus on symmetry-aware measurement adaptation that outperforms unitary parametrizations. We compare GQML for similarity testing against classical deep neural networks and convolutional neural networks with Siamese architectures. We show that quantum networks largely outperform their classical counterparts. We explain this difference in performance by analyzing correlated distributions used for composing our dataset. We relate the similarity testing with problems that showcase a proven maximal separation between the BQP complexity class and the polynomial hierarchy. While the ability to achieve advantage largely depends on how data are loaded, we discuss how similar problems can benefit from quantum machine learning.
Abstract:Geometric quantum machine learning (GQML) aims to embed problem symmetries for learning efficient solving protocols. However, the question remains if (G)QML can be routinely used for constructing protocols with an exponential separation from classical analogs. In this Letter we consider Simon's problem for learning properties of Boolean functions, and show that this can be related to an unsupervised circuit classification problem. Using the workflow of geometric QML, we learn from first principles Simon's algorithm, thus discovering an example of BQP$^A\neq$BPP protocol with respect to some dataset (oracle $A$). Our key findings include the development of an equivariant feature map for embedding Boolean functions, based on twirling with respect to identified bitflip and permutational symmetries, and measurement based on invariant observables with a sampling advantage. The proposed workflow points to the importance of data embeddings and classical post-processing, while keeping the variational circuit as a trivial identity operator. Next, developing the intuition for the function learning, we visualize instances as directed computational hypergraphs, and observe that the GQML protocol can access their global topological features for distinguishing bijective and surjective functions. Finally, we discuss the prospects for learning other BQP$^A$-type protocols, and conjecture that this depends on the ability of simplifying embeddings-based oracles $A$ applied as a linear combination of unitaries.
Abstract:We can learn from analyzing quantum convolutional neural networks (QCNNs) that: 1) working with quantum data can be perceived as embedding physical system parameters through a hidden feature map; 2) their high performance for quantum phase recognition can be attributed to generation of a very suitable basis set during the ground state embedding, where quantum criticality of spin models leads to basis functions with rapidly changing features; 3) pooling layers of QCNNs are responsible for picking those basis functions that can contribute to forming a high-performing decision boundary, and the learning process corresponds to adapting the measurement such that few-qubit operators are mapped to full-register observables; 4) generalization of QCNN models strongly depends on the embedding type, and that rotation-based feature maps with the Fourier basis require careful feature engineering; 5) accuracy and generalization of QCNNs with readout based on a limited number of shots favor the ground state embeddings and associated physics-informed models. We demonstrate these points in simulation, where our results shed light on classification for physical processes, relevant for applications in sensing. Finally, we show that QCNNs with properly chosen ground state embeddings can be used for fluid dynamics problems, expressing shock wave solutions with good generalization and proven trainability.