Abstract:Variable scene layouts and coexisting objects across scenes make indoor scene recognition still a challenging task. Leveraging object information within scenes to enhance the distinguishability of feature representations has emerged as a key approach in this domain. Currently, most object-assisted methods use a separate branch to process object information, combining object and scene features heuristically. However, few of them pay attention to interpretably handle the hidden discriminative knowledge within object information. In this paper, we propose to leverage discriminative object knowledge to enhance scene feature representations. Initially, we capture the object-scene discriminative relationships from a probabilistic perspective, which are transformed into an Inter-Object Discriminative Prototype (IODP). Given the abundant prior knowledge from IODP, we subsequently construct a Discriminative Graph Network (DGN), in which pixel-level scene features are defined as nodes and the discriminative relationships between node features are encoded as edges. DGN aims to incorporate inter-object discriminative knowledge into the image representation through graph convolution. With the proposed IODP and DGN, we obtain state-of-the-art results on several widely used scene datasets, demonstrating the effectiveness of the proposed approach.
Abstract:Due to the high inter-class similarity caused by the complex composition within scenes and the co-existing objects across scenes, various studies have explored object semantic knowledge within scenes to improve scene recognition. However, a resulting issue arises as semantic segmentation or object detection techniques demand heavy computational power, thereby burdening the network considerably. This limitation often renders object-assisted approaches incompatible with edge devices. In contrast, this paper proposes a semantic-based similarity prototype that assists the scene recognition network to achieve higher accuracy without increasing network parameters. It is simple and can be plug-and-played into existing pipelines. More specifically, a statistical strategy is introduced to depict semantic knowledge in scenes as class-level semantic representations. These representations are utilized to explore inter-class correlations, ultimately constructing a similarity prototype. Furthermore, we propose two ways to use the similarity prototype to support network training from the perspective of gradient label softening and batch-level contrastive loss, respectively. Comprehensive evaluations on multiple benchmarks show that our similarity prototype enhances the performance of existing networks without adding any computational burden. Code and the statistical similarity prototype will be available soon.
Abstract:Exploring the semantic context in scene images is essential for indoor scene recognition. However, due to the diverse intra-class spatial layouts and the coexisting inter-class objects, modeling contextual relationships to adapt various image characteristics is a great challenge. Existing contextual modeling methods for indoor scene recognition exhibit two limitations: 1) During training, space-independent information, such as color, may hinder optimizing the network's capacity to represent the spatial context. 2) These methods often overlook the differences in coexisting objects across different scenes, suppressing the performance of scene recognition. To address these limitations, we propose SpaCoNet, a novel approach that simultaneously models the Spatial relation and Co-occurrence of objects based on semantic segmentation. Firstly, the semantic spatial relation module (SSRM) is designed to explore the spatial relations among objects within a scene. With the help of semantic segmentation, this module decouples the spatial information from the image, effectively avoiding the influence of irrelevant features. Secondly, both spatial context features from SSRM and deep features from RGB feature extractor are used to distinguish the coexisting object across different scenes. Finally, utilizing the discriminative features mentioned above, we employ the self-attention mechanism to explore the long-range co-occurrence relationships among objects, and further generate a semantic-guided feature representation for indoor scene recognition. Experimental results on three publicly available datasets demonstrate the effectiveness and generality of the proposed method. The code will be made publicly available after the blind-review process is completed.
Abstract:Despite the remarkable success of convolutional neural networks in various computer vision tasks, recognizing indoor scenes still presents a significant challenge due to their complex composition. Consequently, effectively leveraging semantic information in the scene has been a key issue in advancing indoor scene recognition. Unfortunately, the accuracy of semantic segmentation has limited the effectiveness of existing approaches for leveraging semantic information. As a result, many of these approaches remain at the stage of auxiliary labeling or co-occurrence statistics, with few exploring the contextual relationships between the semantic elements directly within the scene. In this paper, we propose the Semantic Region Relationship Model (SRRM), which starts directly from the semantic information inside the scene. Specifically, SRRM adopts an adaptive and efficient approach to mitigate the negative impact of semantic ambiguity and then models the semantic region relationship to perform scene recognition. Additionally, to more comprehensively exploit the information contained in the scene, we combine the proposed SRRM with the PlacesCNN module to create the Combined Semantic Region Relation Model (CSRRM), and propose a novel information combining approach to effectively explore the complementary contents between them. CSRRM significantly outperforms the SOTA methods on the MIT Indoor 67, reduced Places365 dataset, and SUN RGB-D without retraining. The code is available at: https://github.com/ChuanxinSong/SRRM