Abstract:Unmanned aerial vehicle-aided communication (UAB-BS) is a promising solution to establish rapid wireless connectivity in sudden/temporary crowded events because of its more flexibility and mobility features than conventional ground base station (GBS). Because of these benefits, UAV-BSs can easily be deployed at high altitudes to provide more line of sight (LoS) links than GBS. Therefore, users on the ground can obtain more reliable wireless channels. In practice, the mobile nature of the ground user can create uneven user density at different times and spaces. This phenomenon leads to unbalanced user associations among UAV-BSs and may cause frequent UAV-BS overload. We propose a three-dimensional adaptive and fair deployment approach to solve this problem. The proposed approach can jointly optimize the altitude and transmission power of UAV-BS to offload the traffic from overloaded UAV-BSs. The simulation results show that the network performance improves by 37.71% in total capacity, 37.48% in total energy efficiency and 16.12% in the Jain fairness index compared to the straightforward greedy approach.
Abstract:The unmanned aerial vehicles base stations (UAV-BSs) have great potential in being widely used in many dynamic application scenarios. In those scenarios, the movements of served user equipments (UEs) are inevitable, so the UAV-BSs needs to be re-positioned dynamically for providing seamless services. In this paper, we propose a system framework consisting of UEs clustering, UAV-BS placement, UEs trajectories prediction, and UAV-BS reposition matching scheme, to serve the UEs seamlessly as well as minimize the energy cost of UAV-BSs' reposition trajectories. An Echo State Network (ESN) based algorithm for predicting the future trajectories of UEs and a Kuhn-Munkres-based algorithm for finding the energy-efficient reposition trajectories of UAV-BSs is designed, respectively. We conduct a simulation using a real open dataset for performance validation. The simulation results indicate that the proposed framework achieves high prediction accuracy and provides the energy-efficient matching scheme.
Abstract:Future mobile communication networks require an Aerial Base Station (ABS) with fast mobility and long-term hovering capabilities. At present, unmanned aerial vehicles (UAV) or drones do not have long flight times and are mainly used for monitoring, surveillance, and image post-processing. On the other hand, the traditional airship is too large and not easy to take off and land. Therefore, we propose to develop an "Artificial Intelligence (AI) Drone-Cruiser" base station that can help 5G mobile communication systems and beyond quickly recover the network after a disaster and handle the instant communications by the flash crowd. The drone-cruiser base station can overcome the communications problem for three types of flash crowds, such as in stadiums, parades, and large plaza so that an appropriate number of aerial base stations can be accurately deployed to meet large and dynamic traffic demands. Artificial intelligence can solve these problems by analyzing the collected data, and then adjust the system parameters in the framework of Self-Organizing Network (SON) to achieve the goals of self-configuration, self-optimization, and self-healing. With the help of AI technologies, 5G networks can become more intelligent. This paper aims to provide a new type of service, On-Demand Aerial Base Station as a Service. This work needs to overcome the following five technical challenges: innovative design of drone-cruisers for the long-time hovering, crowd estimation and prediction, rapid 3D wireless channel learning and modeling, 3D placement of aerial base stations and the integration of WiFi front-haul and millimeter wave/WiGig back-haul networks.