Abstract:Large Language Models (LLMs) have demonstrated strong performance across various general Natural Language Processing (NLP) tasks. However, their effectiveness in financial credit assessment applications remains suboptimal, primarily due to the specialized financial expertise required for these tasks. To address this limitation, we propose ZiGong, a Mistral-based model enhanced through multi-task supervised fine-tuning. To specifically combat model hallucination in financial contexts, we introduce a novel data pruning methodology. Our approach utilizes a proxy model to score training samples, subsequently combining filtered data with original datasets for model training. This data refinement strategy effectively reduces hallucinations in LLMs while maintaining reliability in downstream financial applications. Experimental results show our method significantly enhances model robustness and prediction accuracy in real-world financial scenarios.
Abstract:Current research on tool learning primarily focuses on selecting the most effective tool from a wide array of options, often overlooking cost-effectiveness, a crucial factor in human problem-solving. In this paper, we address the selection of homogeneous tools by predicting both their performance and the associated cost required to accomplish a given task. We then assign queries to the optimal tools in a cost-effective manner. Our experimental results demonstrate that our method achieves higher performance at a lower cost compared to strong baseline approaches.
Abstract:Recent industrial applications in risk prediction still heavily rely on extensively manually-tuned, statistical learning methods. Real-world financial data, characterized by its high-dimensionality, sparsity, high noise levels, and significant imbalance, poses unique challenges for the effective application of deep neural network models. In this work, we introduce a novel deep learning risk prediction framework, FinLangNet, which conceptualizes credit loan trajectories in a structure that mirrors linguistic constructs. This framework is tailored for credit risk prediction using real-world financial data, drawing on structural similarities to language by adapting natural language processing techniques. It focuses on analyzing the evolution and predictability of credit histories through detailed financial event sequences. Our research demonstrates that FinLangNet surpasses traditional statistical methods in predicting credit risk and that its integration with these methods enhances credit card fraud prediction models, achieving a significant improvement of over 1.5 points in the Kolmogorov-Smirnov metric.