Abstract:Misinformation, defined as false or inaccurate information, can result in significant societal harm when it is spread with malicious or even innocuous intent. The rapid online information exchange necessitates advanced detection mechanisms to mitigate misinformation-induced harm. Existing research, however, has predominantly focused on assessing veracity, overlooking the legal implications and social consequences of misinformation. In this work, we take a novel angle to consolidate the definition of misinformation detection using legal issues as a measurement of societal ramifications, aiming to bring interdisciplinary efforts to tackle misinformation and its consequence. We introduce a new task: Misinformation with Legal Consequence (MisLC), which leverages definitions from a wide range of legal domains covering 4 broader legal topics and 11 fine-grained legal issues, including hate speech, election laws, and privacy regulations. For this task, we advocate a two-step dataset curation approach that utilizes crowd-sourced checkworthiness and expert evaluations of misinformation. We provide insights about the MisLC task through empirical evidence, from the problem definition to experiments and expert involvement. While the latest large language models and retrieval-augmented generation are effective baselines for the task, we find they are still far from replicating expert performance.
Abstract:Modern large language models (LLMs) have a significant amount of world knowledge, which enables strong performance in commonsense reasoning and knowledge-intensive tasks when harnessed properly. The language model can also learn social biases, which has a significant potential for societal harm. There have been many mitigation strategies proposed for LLM safety, but it is unclear how effective they are for eliminating social biases. In this work, we propose a new methodology for attacking language models with knowledge graph augmented generation. We refactor natural language stereotypes into a knowledge graph, and use adversarial attacking strategies to induce biased responses from several open- and closed-source language models. We find our method increases bias in all models, even those trained with safety guardrails. This demonstrates the need for further research in AI safety, and further work in this new adversarial space.
Abstract:Deep learning has made significant progress in the past decade, and demonstrates potential to solve problems with extensive social impact. In high-stakes decision making areas such as law, experts often require interpretability for automatic systems to be utilized in practical settings. In this work, we attempt to address these requirements applied to the important problem of legal citation prediction (LCP). We design the task with parallels to the thought-process of lawyers, i.e., with reference to both precedents and legislative provisions. After initial experimental results, we refine the target citation predictions with the feedback of legal experts. Additionally, we introduce a prototype architecture to add interpretability, achieving strong performance while adhering to decision parameters used by lawyers. Our study builds on and leverages the state-of-the-art language processing models for law, while addressing vital considerations for high-stakes tasks with practical societal impact.
Abstract:Hate speech is a serious issue on public forums, and proper enforcement of hate speech laws is key for protecting groups of people against harmful and discriminatory language. However, determining what constitutes hate speech is a complex task that is highly open to subjective interpretations. Existing works do not align their systems with enforceable definitions of hate speech, which can make their outputs inconsistent with the goals of regulators. Our work introduces a new task for enforceable hate speech detection centred around legal definitions, and a dataset annotated on violations of eleven possible definitions by legal experts. Given the challenge of identifying clear, legally enforceable instances of hate speech, we augment the dataset with expert-generated samples and an automatically mined challenge set. We experiment with grounding the model decision in these definitions using zero-shot and few-shot prompting. We then report results on several large language models (LLMs). With this task definition, automatic hate speech detection can be more closely aligned to enforceable laws, and hence assist in more rigorous enforcement of legal protections against harmful speech in public forums.