Abstract:Future warfare will require Command and Control (C2) decision-making to occur in more complex, fast-paced, ill-structured, and demanding conditions. C2 will be further complicated by operational challenges such as Denied, Degraded, Intermittent, and Limited (DDIL) communications and the need to account for many data streams, potentially across multiple domains of operation. Yet, current C2 practices -- which stem from the industrial era rather than the emerging intelligence era -- are linear and time-consuming. Critically, these approaches may fail to maintain overmatch against adversaries on the future battlefield. To address these challenges, we propose a vision for future C2 based on robust partnerships between humans and artificial intelligence (AI) systems. This future vision is encapsulated in three operational impacts: streamlining the C2 operations process, maintaining unity of effort, and developing adaptive collective knowledge systems. This paper illustrates the envisaged future C2 capabilities, discusses the assumptions that shaped them, and describes how the proposed developments could transform C2 in future warfare.
Abstract:Future warfare will require Command and Control (C2) personnel to make decisions at shrinking timescales in complex and potentially ill-defined situations. Given the need for robust decision-making processes and decision-support tools, integration of artificial and human intelligence holds the potential to revolutionize the C2 operations process to ensure adaptability and efficiency in rapidly changing operational environments. We propose to leverage recent promising breakthroughs in interactive machine learning, in which humans can cooperate with machine learning algorithms to guide machine learning algorithm behavior. This paper identifies several gaps in state-of-the-art science and technology that future work should address to extend these approaches to function in complex C2 contexts. In particular, we describe three research focus areas that together, aim to enable scalable interactive machine learning (SIML): 1) developing human-AI interaction algorithms to enable planning in complex, dynamic situations; 2) fostering resilient human-AI teams through optimizing roles, configurations, and trust; and 3) scaling algorithms and human-AI teams for flexibility across a range of potential contexts and situations.