Abstract:Markerless motion capture devices such as the Leap Motion Controller (LMC) have been extensively used for tracking hand, wrist, and forearm positions as an alternative to Marker-based Motion Capture (MMC). However, previous studies have highlighted the subpar performance of LMC in reliably recording hand kinematics. In this study, we employ four LMC devices to optimize their collective tracking volume, aiming to enhance the accuracy and precision of hand kinematics. Through Monte Carlo simulation, we determine an optimized layout for the four LMC devices and subsequently conduct reliability and validity experiments encompassing 1560 trials across ten subjects. The combined tracking volume is validated against an MMC system, particularly for kinematic movements involving wrist, index, and thumb flexion. Utilizing calculation resources in one computer, our result of the optimized configuration has a better visibility rate with a value of 0.05 $\pm$ 0.55 compared to the initial configuration with -0.07 $\pm$ 0.40. Multiple Leap Motion Controllers (LMCs) have proven to increase the interaction space of capture volume but are still unable to give agreeable measurements from dynamic movement.
Abstract:Prosthetic limb abandonment remains an unsolved challenge as amputees consistently reject their devices. Current prosthetic designs often fail to balance human-like perfomance with acceptable device weight, highlighting the need for optimised designs tailored to modern tasks. This study aims to provide a comprehensive dataset of joint kinematics and kinetics essential for performing activities of daily living (ADL), thereby informing the design of more functional and user-friendly prosthetic devices. Functionally required Ranges of Motion (ROM), velocities, and torques for the Glenohumeral (rotation), elbow, Radioulnar, and wrist joints were computed using motion capture data from 12 subjects performing 24 ADLs. Our approach included the computation of joint torques for varying mass and inertia properties of the upper limb, while torques induced by the manipulation of experimental objects were considered by their interaction wrench with the subjects hand. Joint torques pertaining to individual ADL scaled linearly with limb and object mass and mass distribution, permitting their generalisation to not explicitly simulated limb and object dynamics with linear regressors (LRM), exhibiting coefficients of determination R = 0.99 pm 0.01. Exemplifying an application of data-driven prosthesis design, we optimise wrist axes orientations for two serial and two differential joint configurations. Optimised axes reduced peak power requirements, between 22 to 38 percent compared to anatomical configurations, by exploiting high torque correlations between Ulnar deviation and wrist flexion/extension joints. This study offers critical insights into the functional requirements of upper limb prostheses, providing a valuable foundation for data-driven prosthetic design that addresses key user concerns and enhances device adoption.
Abstract:This study addresses the critical need for diverse and comprehensive data focused on human arm joint torques while performing activities of daily living (ADL). Previous studies have often overlooked the influence of objects on joint torques during ADL, resulting in limited datasets for analysis. To address this gap, we propose an Object Augmentation Algorithm (OAA) capable of augmenting existing marker-based databases with virtual object motions and object-induced joint torque estimations. The OAA consists of five phases: (1) computing hand coordinate systems from optical markers, (2) characterising object movements with virtual markers, (3) calculating object motions through inverse kinematics (IK), (4) determining the wrench necessary for prescribed object motion using inverse dynamics (ID), and (5) computing joint torques resulting from object manipulation. The algorithm's accuracy is validated through trajectory tracking and torque analysis on a 7+4 degree of freedom (DoF) robotic hand-arm system, manipulating three unique objects. The results show that the OAA can accurately and precisely estimate 6 DoF object motion and object-induced joint torques. Correlations between computed and measured quantities were > 0.99 for object trajectories and > 0.93 for joint torques. The OAA was further shown to be robust to variations in the number and placement of input markers, which are expected between databases. Differences between repeated experiments were minor but significant (p < 0.05). The algorithm expands the scope of available data and facilitates more comprehensive analyses of human-object interaction dynamics.