Abstract:Supervised machine learning methods for image analysis require large amounts of labelled training data to solve computer vision problems. The recent rise of deep learning algorithms for recognising image content has led to the emergence of many ad-hoc labelling tools. With this survey, we capture and systematise the commonalities as well as the distinctions between existing image labelling software. We perform a structured literature review to compile the underlying concepts and features of image labelling software such as annotation expressiveness and degree of automation. We structure the manual labelling task by its organisation of work, user interface design options, and user support techniques to derive a systematisation schema for this survey. Applying it to available software and the body of literature, enabled us to uncover several application archetypes and key domains such as image retrieval or instance identification in healthcare or television.
Abstract:Within the past decade, the rise of applications based on artificial intelligence (AI) in general and machine learning (ML) in specific has led to many significant contributions within different domains. The applications range from robotics over medical diagnoses up to autonomous driving. However, nearly all applications rely on trained data. In case this data consists of 3D images, it is of utmost importance that the labeling is as accurate as possible to ensure high-quality outcomes of the ML models. Labeling in the 3D space is mostly manual work performed by expert workers, where they draw 3D bounding boxes around target objects the ML model should later automatically identify, e.g., pedestrians for autonomous driving or cancer cells within radiography. While a small range of recent 3D labeling tools exist, they all share three major shortcomings: (i) they are specified for autonomous driving applications, (ii) they lack convenience and comfort functions, and (iii) they have high dependencies and little flexibility in data format. Therefore, we propose a novel labeling tool for 3D object detection in point clouds to address these shortcomings.