University of Würzburg, Würzburg, Germany
Abstract:In the last decades, the classical Vehicle Routing Problem (VRP), i.e., assigning a set of orders to vehicles and planning their routes has been intensively researched. As only the assignment of order to vehicles and their routes is already an NP-complete problem, the application of these algorithms in practice often fails to take into account the constraints and restrictions that apply in real-world applications, the so called rich VRP (rVRP) and are limited to single aspects. In this work, we incorporate the main relevant real-world constraints and requirements. We propose a two-stage strategy and a Timeline algorithm for time windows and pause times, and apply a Genetic Algorithm (GA) and Ant Colony Optimization (ACO) individually to the problem to find optimal solutions. Our evaluation of eight different problem instances against four state-of-the-art algorithms shows that our approach handles all given constraints in a reasonable time.
Abstract:Production issues at Volkswagen in 2016 lead to dramatic losses in sales of up to 400 million Euros per week. This example shows the huge financial impact of a working production facility for companies. Especially in the data-driven domains of Industry 4.0 and Industrial IoT with intelligent, connected machines, a conventional, static maintenance schedule seems to be old-fashioned. In this paper, we present a survey on the current state of the art in predictive maintenance for Industry 4.0. Based on a structured literate survey, we present a classification of predictive maintenance in the context of Industry 4.0 and discuss recent developments in this area.