Abstract:This work investigates the feasibility of using Physics-Informed Neural Networks (PINNs) as surrogate models for river stage prediction, aiming to reduce computational cost while maintaining predictive accuracy. Our primary contribution demonstrates that PINNs can successfully approximate HEC-RAS numerical solutions when trained on a single river, achieving strong predictive accuracy with generally low relative errors, though some river segments exhibit higher deviations. By integrating the governing Saint-Venant equations into the learning process, the proposed PINN-based surrogate model enforces physical consistency and significantly improves computational efficiency compared to HEC-RAS. We evaluate the model's performance in terms of accuracy and computational speed, demonstrating that it closely approximates HEC-RAS predictions while enabling real-time inference. These results highlight the potential of PINNs as effective surrogate models for single-river hydrodynamics, offering a promising alternative for computationally efficient river stage forecasting. Future work will explore techniques to enhance PINN training stability and robustness across a more generalized multi-river model.
Abstract:Privacy is of worldwide concern regarding activities and processes that include sensitive data. For this reason, many countries and territories have been recently approving regulations controlling the extent to which organizations may exploit data provided by people. Artificial intelligence areas, such as machine learning and natural language processing, have already successfully employed privacy-preserving mechanisms in order to safeguard data privacy in a vast number of applications. Information retrieval (IR) is likewise prone to privacy threats, such as attacks and unintended disclosures of documents and search history, which may cripple the security of users and be penalized by data protection laws. This work aims at highlighting and discussing open challenges for privacy in the recent literature of IR, focusing on tasks featuring user-generated text data. Our contribution is threefold: firstly, we present an overview of privacy threats to IR tasks; secondly, we discuss applicable privacy-preserving mechanisms which may be employed in solutions to restrain privacy hazards; finally, we bring insights on the tradeoffs between privacy preservation and utility performance for IR tasks.