Abstract:Deep learning (DL) models for natural language processing (NLP) tasks often handle private data, demanding protection against breaches and disclosures. Data protection laws, such as the European Union's General Data Protection Regulation (GDPR), thereby enforce the need for privacy. Although many privacy-preserving NLP methods have been proposed in recent years, no categories to organize them have been introduced yet, making it hard to follow the progress of the literature. To close this gap, this article systematically reviews over sixty DL methods for privacy-preserving NLP published between 2016 and 2020, covering theoretical foundations, privacy-enhancing technologies, and analysis of their suitability for real-world scenarios. First, we introduce a novel taxonomy for classifying the existing methods into three categories: data safeguarding methods, trusted methods, and verification methods. Second, we present an extensive summary of privacy threats, datasets for applications, and metrics for privacy evaluation. Third, throughout the review, we describe privacy issues in the NLP pipeline in a holistic view. Further, we discuss open challenges in privacy-preserving NLP regarding data traceability, computation overhead, dataset size, the prevalence of human biases in embeddings, and the privacy-utility tradeoff. Finally, this review presents future research directions to guide successive research and development of privacy-preserving NLP models.
Abstract:Privacy is of worldwide concern regarding activities and processes that include sensitive data. For this reason, many countries and territories have been recently approving regulations controlling the extent to which organizations may exploit data provided by people. Artificial intelligence areas, such as machine learning and natural language processing, have already successfully employed privacy-preserving mechanisms in order to safeguard data privacy in a vast number of applications. Information retrieval (IR) is likewise prone to privacy threats, such as attacks and unintended disclosures of documents and search history, which may cripple the security of users and be penalized by data protection laws. This work aims at highlighting and discussing open challenges for privacy in the recent literature of IR, focusing on tasks featuring user-generated text data. Our contribution is threefold: firstly, we present an overview of privacy threats to IR tasks; secondly, we discuss applicable privacy-preserving mechanisms which may be employed in solutions to restrain privacy hazards; finally, we bring insights on the tradeoffs between privacy preservation and utility performance for IR tasks.