Abstract:Learned construction heuristics for scheduling problems have become increasingly competitive with established solvers and heuristics in recent years. In particular, significant improvements have been observed in solution approaches using deep reinforcement learning (DRL). While much attention has been paid to the design of network architectures and training algorithms to achieve state-of-the-art results, little research has investigated the optimal use of trained DRL agents during inference. Our work is based on the hypothesis that, similar to search algorithms, the utilization of trained DRL agents should be dependent on the acceptable computational budget. We propose a simple yet effective parameterization, called $\delta$-sampling that manipulates the trained action vector to bias agent behavior towards exploration or exploitation during solution construction. By following this approach, we can achieve a more comprehensive coverage of the search space while still generating an acceptable number of solutions. In addition, we propose an algorithm for obtaining the optimal parameterization for such a given number of solutions and any given trained agent. Experiments extending existing training protocols for job shop scheduling problems with our inference method validate our hypothesis and result in the expected improvements of the generated solutions.
Abstract:Research on deep reinforcement learning (DRL) based production scheduling (PS) has gained a lot of attention in recent years, primarily due to the high demand for optimizing scheduling problems in diverse industry settings. Numerous studies are carried out and published as stand-alone experiments that often vary only slightly with respect to problem setups and solution approaches. The programmatic core of these experiments is typically very similar. Despite this fact, no standardized and resilient framework for experimentation on PS problems with DRL algorithms could be established so far. In this paper, we introduce schlably, a Python-based framework that provides researchers a comprehensive toolset to facilitate the development of PS solution strategies based on DRL. schlably eliminates the redundant overhead work that the creation of a sturdy and flexible backbone requires and increases the comparability and reusability of conducted research work.