Abstract:We show that current open-source foundational LLMs possess instruction capability and German legal background knowledge that is sufficient for some legal analysis in an educational context. However, model capability breaks down in very specific tasks, such as the classification of "Gutachtenstil" appraisal style components, or with complex contexts, such as complete legal opinions. Even with extended context and effective prompting strategies, they cannot match the Bag-of-Words baseline. To combat this, we introduce a Retrieval Augmented Generation based prompt example selection method that substantially improves predictions in high data availability scenarios. We further evaluate the performance of pre-trained LLMs on two standard tasks for argument mining and automated essay scoring and find it to be more adequate. Throughout, pre-trained LLMs improve upon the baseline in scenarios with little or no labeled data with Chain-of-Thought prompting further helping in the zero-shot case.
Abstract:Accurate intra-day forecasts of the power output by PhotoVoltaic (PV) systems are critical to improve the operation of energy distribution grids. We describe a hybrid-physical model, which aims at improving deterministic intra-day forecasts, issued by a PV performance model fed by Numerical Weather Predictions (NWP), by using them as covariates in the context of an autoregressive recurrent neural model. Our proposal repurposes a neural model initially used in the retail sector, and discloses a novel truncated Gaussian output distribution. We experimentally compare many model variants to alternatives from the literature, and an ablation study shows that the components in the best performing variant work synergistically to reach a skill score of 7.54% with respect to the NWP-driven PV performance model baseline.