Abstract:Prior coarticulation studies focus mainly on limited phonemic sequences and specific articulators, providing only approximate descriptions of the temporal extent and magnitude of coarticulation. This paper is an initial attempt to comprehensively investigate coarticulation. We leverage existing Electromagnetic Articulography (EMA) datasets to develop and train a phoneme-to-articulatory (P2A) model that can generate realistic EMA for novel phoneme sequences and replicate known coarticulation patterns. We use model-generated EMA on 9K minimal word pairs to analyze coarticulation magnitude and extent up to eight phonemes from the coarticulation trigger, and compare coarticulation resistance across different consonants. Our findings align with earlier studies and suggest a longer-range coarticulation effect than previously found. This model-based approach can potentially compare coarticulation between adults and children and across languages, offering new insights into speech production.
Abstract:Our goal is to deploy a high-accuracy system starting with zero training examples. We consider an "on-the-job" setting, where as inputs arrive, we use real-time crowdsourcing to resolve uncertainty where needed and output our prediction when confident. As the model improves over time, the reliance on crowdsourcing queries decreases. We cast our setting as a stochastic game based on Bayesian decision theory, which allows us to balance latency, cost, and accuracy objectives in a principled way. Computing the optimal policy is intractable, so we develop an approximation based on Monte Carlo Tree Search. We tested our approach on three datasets---named-entity recognition, sentiment classification, and image classification. On the NER task we obtained more than an order of magnitude reduction in cost compared to full human annotation, while boosting performance relative to the expert provided labels. We also achieve a 8% F1 improvement over having a single human label the whole set, and a 28% F1 improvement over online learning.