Abstract:In this work, a new multiobjective optimization algorithm called multiobjective learner performance-based behavior algorithm is proposed. The proposed algorithm is based on the process of transferring students from high school to college. The proposed technique produces a set of non-dominated solutions. To judge the ability and efficacy of the proposed multiobjective algorithm, it is evaluated against a group of benchmarks and five real-world engineering optimization problems. Additionally, to evaluate the proposed technique quantitatively, several most widely used metrics are applied. Moreover, the results are confirmed statistically. The proposed work is then compared with three multiobjective algorithms, which are MOWCA, NSGA-II, and MODA. Similar to the proposed technique, the other algorithms in the literature were run against the benchmarks, and the real-world engineering problems utilized in the paper. The algorithms are compared with each other employing descriptive, tabular, and graphical demonstrations. The results proved the ability of the proposed work in providing a set of non-dominated solutions, and that the algorithm outperformed the other participated algorithms in most of the cases.
Abstract:A novel evolutionary algorithm called learner performance based behavior algorithm (LPB) is proposed in this article. The basic inspiration of LPB originates from the process of accepting graduated learners from high school in different departments at university. In addition, the changes those learners should do in their studying behaviors to improve their study level at university. The most important stages of optimization; exploitation and exploration are outlined by designing the process of accepting graduated learners from high school to university and the procedure of improving the learner's studying behavior at university to improve the level of their study. To show the accuracy of the proposed algorithm, it is evaluated against a number of test functions, such as traditional benchmark functions, CEC-C06 2019 test functions, and a real-world case study problem. The results of the proposed algorithm are then compared to the DA, GA, and PSO. The proposed algorithm produced superior results in most of the cases and comparative in some others. It is proved that the algorithm has a great ability to deal with the large optimization problems comparing to the DA, GA, and PSO. The overall results proved the ability of LPB in improving the initial population and converging towards the global optima. Moreover, the results of the proposed work are proved statistically.
Abstract:Dragonfly algorithm (DA) is one of the most recently developed heuristic optimization algorithms by Mirjalili in 2016. It is now one of the most widely used algorithms. In some cases, it outperforms the most popular algorithms. However, this algorithm is not far from obstacles when it comes to complex optimization problems. In this work, along with the strengths of the algorithm in solving real-world optimization problems, the weakness of the algorithm to optimize complex optimization problems is addressed. This survey presents a comprehensive investigation of DA in the engineering area. First, an overview of the algorithm is discussed. Additionally, the different variants of the algorithm are addressed too. The combined versions of the DA with other techniques and the modifications that have been done to make the algorithm work better are shown. Besides, a survey on applications in engineering area that used DA is offered. The algorithm is compared with some other metaheuristic algorithms to demonstrate its ability to optimize problems comparing to the others. The results of the algorithm from the works that utilized the DA in the literature and the results of the benchmark functions showed that in comparison with some other algorithms DA has an excellent performance, especially for small to medium problems. Moreover, the bottlenecks of the algorithm and some future trends are discussed. Authors conduct this research with the hope of offering beneficial information about the DA to the researchers who want to study the algorithm and utilize it to optimize engineering problems.
Abstract:One of the most recently developed heuristic optimization algorithms is dragonfly by Mirjalili. Dragonfly algorithm has shown its ability to optimizing different real world problems. It has three variants. In this work, an overview of the algorithm and its variants is presented. Moreover, the hybridization versions of the algorithm are discussed. Furthermore, the results of the applications that utilized dragonfly algorithm in applied science are offered in the following area: Machine Learning, Image Processing, Wireless, and Networking. It is then compared with some other metaheuristic algorithms. In addition, the algorithm is tested on the CEC-C06 2019 benchmark functions. The results prove that the algorithm has great exploration ability and its convergence rate is better than other algorithms in the literature, such as PSO and GA. In general, in this survey the strong and weak points of the algorithm are discussed. Furthermore, some future works that will help in improving the algorithm's weak points are recommended. This study is conducted with the hope of offering beneficial information about dragonfly algorithm to the researchers who want to study the algorithm.