Abstract:Characterizing a quantum system by learning its state or evolution is a fundamental problem in quantum physics and learning theory with a myriad of applications. Recently, as a new approach to this problem, the task of agnostic state tomography was defined, in which one aims to approximate an arbitrary quantum state by a simpler one in a given class. Generalizing this notion to quantum processes, we initiate the study of agnostic process tomography: given query access to an unknown quantum channel $\Phi$ and a known concept class $\mathcal{C}$ of channels, output a quantum channel that approximates $\Phi$ as well as any channel in the concept class $\mathcal{C}$, up to some error. In this work, we propose several natural applications for this new task in quantum machine learning, quantum metrology, classical simulation, and error mitigation. In addition, we give efficient agnostic process tomography algorithms for a wide variety of concept classes, including Pauli strings, Pauli channels, quantum junta channels, low-degree channels, and a class of channels produced by $\mathsf{QAC}^0$ circuits. The main technical tool we use is Pauli spectrum analysis of operators and superoperators. We also prove that, using ancilla qubits, any agnostic state tomography algorithm can be extended to one solving agnostic process tomography for a compatible concept class of unitaries, immediately giving us efficient agnostic learning algorithms for Clifford circuits, Clifford circuits with few T gates, and circuits consisting of a tensor product of single-qubit gates. Together, our results provide insight into the conditions and new algorithms necessary to extend the learnability of a concept class from the standard tomographic setting to the agnostic one.
Abstract:This work studies the learnability of unknown quantum circuits in the near term. We prove the natural robustness of quantum statistical queries for learning quantum processes and provide an efficient way to benchmark various classes of noise from statistics, which gives us a powerful framework for developing noise-tolerant algorithms. We adapt a learning algorithm for constant-depth quantum circuits to the quantum statistical query setting with a small overhead in the query complexity. We prove average-case lower bounds for learning random quantum circuits of logarithmic and higher depths within diamond distance with statistical queries. Additionally, we show the hardness of the quantum threshold search problem from quantum statistical queries and discuss its implications for the learnability of shallow quantum circuits. Finally, we prove that pseudorandom unitaries (PRUs) cannot be constructed using circuits of constant depth by constructing an efficient distinguisher and proving a new variation of the quantum no-free lunch theorem.
Abstract:Learning complex quantum processes is a central challenge in many areas of quantum computing and quantum machine learning, with applications in quantum benchmarking, cryptanalysis, and variational quantum algorithms. This paper introduces the first learning framework for studying quantum process learning within the Quantum Statistical Query (QSQ) model, providing the first formal definition of statistical queries to quantum processes (QPSQs). The framework allows us to propose an efficient QPSQ learner for arbitrary quantum processes accompanied by a provable performance guarantee. We also provide numerical simulations to demonstrate the efficacy of this algorithm. The practical relevance of this framework is exemplified through application in cryptanalysis, highlighting vulnerabilities of Classical-Readout Quantum Physical Unclonable Functions (CR-QPUFs), addressing an important open question in the field of quantum hardware security. This work marks a significant step towards understanding the learnability of quantum processes and shedding light on their security implications.