Abstract:The state of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs. Here, a km-scale downscaling diffusion model is presented as a cost effective alternative. The model is trained from a regional high-resolution weather model over Taiwan, and conditioned on ERA5 reanalysis data. To address the downscaling uncertainties, large resolution ratios (25km to 2km), different physics involved at different scales and predict channels that are not in the input data, we employ a two-step approach (\textit{ResDiff}) where a (UNet) regression predicts the mean in the first step and a diffusion model predicts the residual in the second step. \textit{ResDiff} exhibits encouraging skill in bulk RMSE and CRPS scores. The predicted spectra and distributions from ResDiff faithfully recover important power law relationships regulating damaging wind and rain extremes. Case studies of coherent weather phenomena reveal appropriate multivariate relationships reminiscent of learnt physics. This includes the sharp wind and temperature variations that co-locate with intense rainfall in a cold front, and the extreme winds and rainfall bands that surround the eyewall of typhoons. Some evidence of simultaneous bias correction is found. A first attempt at downscaling directly from an operational global forecast model successfully retains many of these benefits. The implication is that a new era of fully end-to-end, global-to-regional machine learning weather prediction is likely near at hand.
Abstract:We present a data-driven basketball set play simulation. Given an offensive set play sketch, our method simulates potential scenarios that may occur in the game. The simulation provides coaches and players with insights on how a given set play can be executed. To achieve the goal, we train a conditional adversarial network on NBA movement data to imitate the behaviors of how players move around the court through two major components: a generator that learns to generate natural player movements based on a latent noise and a user sketched set play; and a discriminator that is used to evaluate the realism of the basketball play. To improve the quality of simulation, we minimize 1.) a dribbler loss to prevent the ball from drifting away from the dribbler; 2.) a defender loss to prevent the dribbler from not being defended; 3.) a ball passing loss to ensure the straightness of passing trajectories; and 4) an acceleration loss to minimize unnecessary players' movements. To evaluate our system, we objectively compared real and simulated basketball set plays. Besides, a subjective test was conducted to judge whether a set play was real or generated by our network. On average, the mean correct rates to the binary tests were 56.17 \%. Experiment results and the evaluations demonstrated the effectiveness of our system.