Abstract:Recently, deep learning based methods have revolutionized remote sensing image segmentation. However, these methods usually rely on a pre-defined semantic class set, thus needing additional image annotation and model training when adapting to new classes. More importantly, they are unable to segment arbitrary semantic classes. In this work, we introduce Open-Vocabulary Remote Sensing Image Semantic Segmentation (OVRSISS), which aims to segment arbitrary semantic classes in remote sensing images. To address the lack of OVRSISS datasets, we develop LandDiscover50K, a comprehensive dataset of 51,846 images covering 40 diverse semantic classes. In addition, we propose a novel framework named GSNet that integrates domain priors from special remote sensing models and versatile capabilities of general vision-language models. Technically, GSNet consists of a Dual-Stream Image Encoder (DSIE), a Query-Guided Feature Fusion (QGFF), and a Residual Information Preservation Decoder (RIPD). DSIE first captures comprehensive features from both special models and general models in dual streams. Then, with the guidance of variable vocabularies, QGFF integrates specialist and generalist features, enabling them to complement each other. Finally, RIPD is proposed to aggregate multi-source features for more accurate mask predictions. Experiments show that our method outperforms other methods by a large margin, and our proposed LandDiscover50K improves the performance of OVRSISS methods. The proposed dataset and method will be made publicly available at https://github.com/yecy749/GSNet.
Abstract:Representation learning plays a critical role in the analysis of time series data and has high practical value across a wide range of applications. including trend analysis, time series data retrieval and forecasting. In practice, data confusion is a significant issue as it can considerably impact the effectiveness and accuracy of data analysis, machine learning models and decision-making processes. In general, previous studies did not consider the variability at various levels of granularity, thus resulting in inadequate information utilization, which further exacerbated the issue of data confusion. This paper proposes an unsupervised framework to realize multi-granularity representation learning for time series. Specifically, we employed a cross-granularity transformer to develop an association between fine- and coarse-grained representations. In addition, we introduced a retrieval task as an unsupervised training task to learn the multi-granularity representation of time series. Moreover, a novel loss function was designed to obtain the comprehensive multi-granularity representation of the time series via unsupervised learning. The experimental results revealed that the proposed framework demonstrates significant advantages over alternative representation learning models.