Abstract:Sequential recommendation (SR) learns from the temporal dynamics of user-item interactions to predict the next ones. Fairness-aware recommendation mitigates a variety of algorithmic biases in the learning of user preferences. This paper aims at bringing a marriage between SR and algorithmic fairness. We propose a novel fairness-aware sequential recommendation task, in which a new metric, interaction fairness, is defined to estimate how recommended items are fairly interacted by users with different protected attribute groups. We propose a multi-task learning based deep end-to-end model, FairSR, which consists of two parts. One is to learn and distill personalized sequential features from the given user and her item sequence for SR. The other is fairness-aware preference graph embedding (FPGE). The aim of FPGE is two-fold: incorporating the knowledge of users' and items' attributes and their correlation into entity representations, and alleviating the unfair distributions of user attributes on items. Extensive experiments conducted on three datasets show FairSR can outperform state-of-the-art SR models in recommendation performance. In addition, the recommended items by FairSR also exhibit promising interaction fairness.
Abstract:While Wikipedia has been utilized for fact-checking and claim verification to debunk misinformation and disinformation, it is essential to either improve article quality and rule out noisy articles. Self-contradiction is one of the low-quality article types in Wikipedia. In this work, we propose a task of detecting self-contradiction articles in Wikipedia. Based on the "self-contradictory" template, we create a novel dataset for the self-contradiction detection task. Conventional contradiction detection focuses on comparing pairs of sentences or claims, but self-contradiction detection needs to further reason the semantics of an article and simultaneously learn the contradiction-aware comparison from all pairs of sentences. Therefore, we present the first model, Pairwise Contradiction Neural Network (PCNN), to not only effectively identify self-contradiction articles, but also highlight the most contradiction pairs of contradiction sentences. The main idea of PCNN is two-fold. First, to mitigate the effect of data scarcity on self-contradiction articles, we pre-train the module of pairwise contradiction learning using SNLI and MNLI benchmarks. Second, we select top-K sentence pairs with the highest contradiction probability values and model their correlation to determine whether the corresponding article belongs to self-contradiction. Experiments conducted on the proposed WikiContradiction dataset exhibit that PCNN can generate promising performance and comprehensively highlight the sentence pairs the contradiction locates.
Abstract:Sequential recommendation (SR) is to accurately recommend a list of items for a user based on her current accessed ones. While new-coming users continuously arrive in the real world, one crucial task is to have inductive SR that can produce embeddings of users and items without re-training. Given user-item interactions can be extremely sparse, another critical task is to have transferable SR that can transfer the knowledge derived from one domain with rich data to another domain. In this work, we aim to present the holistic SR that simultaneously accommodates conventional, inductive, and transferable settings. We propose a novel deep learning-based model, Relational Temporal Attentive Graph Neural Networks (RetaGNN), for holistic SR. The main idea of RetaGNN is three-fold. First, to have inductive and transferable capabilities, we train a relational attentive GNN on the local subgraph extracted from a user-item pair, in which the learnable weight matrices are on various relations among users, items, and attributes, rather than nodes or edges. Second, long-term and short-term temporal patterns of user preferences are encoded by a proposed sequential self-attention mechanism. Third, a relation-aware regularization term is devised for better training of RetaGNN. Experiments conducted on MovieLens, Instagram, and Book-Crossing datasets exhibit that RetaGNN can outperform state-of-the-art methods under conventional, inductive, and transferable settings. The derived attention weights also bring model explainability.