Abstract:Manipulating deformable objects remains a challenge within robotics due to the difficulties of state estimation, long-horizon planning, and predicting how the object will deform given an interaction. These challenges are the most pronounced with 3D deformable objects. We propose SculptDiff, a goal-conditioned diffusion-based imitation learning framework that works with point cloud state observations to directly learn clay sculpting policies for a variety of target shapes. To the best of our knowledge this is the first real-world method that successfully learns manipulation policies for 3D deformable objects. For sculpting videos and access to our dataset and hardware CAD models, see the project website: https://sites.google.com/andrew.cmu.edu/imitation-sculpting/home
Abstract:Deformable object manipulation presents a unique set of challenges in robotic manipulation by exhibiting high degrees of freedom and severe self-occlusion. State representation for materials that exhibit plastic behavior, like modeling clay or bread dough, is also difficult because they permanently deform under stress and are constantly changing shape. In this work, we investigate each of these challenges using the task of robotic sculpting with a parallel gripper. We propose a system that uses point clouds as the state representation and leverages pre-trained point cloud reconstruction Transformer to learn a latent dynamics model to predict material deformations given a grasp action. We design a novel action sampling algorithm that reasons about geometrical differences between point clouds to further improve the efficiency of model-based planners. All data and experiments are conducted entirely in the real world. Our experiments show the proposed system is able to successfully capture the dynamics of clay, and is able to create a variety of simple shapes.