Abstract:Phase retrieval in inline holography is a fundamental yet ill-posed inverse problem due to the nonlinear coupling between amplitude and phase in coherent imaging. We present a novel off-the-shelf solution that leverages a diffusion model trained solely on object amplitude to recover both amplitude and phase from diffraction intensities. Using a predictor-corrector sampling framework with separate likelihood gradients for amplitude and phase, our method enables complex field reconstruction without requiring ground-truth phase data for training. We validate the proposed approach through extensive simulations and experiments, demonstrating robust generalization across diverse object shapes, imaging system configurations, and modalities, including lensless setups. Notably, a diffusion prior trained on simple amplitude data (e.g., polystyrene beads) successfully reconstructs complex biological tissue structures, highlighting the method's adaptability. This framework provides a cost-effective, generalizable solution for nonlinear inverse problems in computational imaging, and establishes a foundation for broader coherent imaging applications beyond holography.
Abstract:Fourier phase retrieval is a classical problem of restoring a signal only from the measured magnitude of its Fourier transform. Although Fienup-type algorithms, which use prior knowledge in both spatial and Fourier domains, have been widely used in practice, they can often stall in local minima. Modern methods such as PhaseLift and PhaseCut may offer performance guarantees with the help of convex relaxation. However, these algorithms are usually computationally intensive for practical use. To address this problem, we propose a novel, unsupervised, feed-forward neural network for Fourier phase retrieval which enables immediate high quality reconstruction. Unlike the existing deep learning approaches that use a neural network as a regularization term or an end-to-end blackbox model for supervised training, our algorithm is a feed-forward neural network implementation of PhaseCut algorithm in an unsupervised learning framework. Specifically, our network is composed of two generators: one for the phase estimation using PhaseCut loss, followed by another generator for image reconstruction, all of which are trained simultaneously using a cycleGAN framework without matched data. The link to the classical Fienup-type algorithms and the recent symmetry-breaking learning approach is also revealed. Extensive experiments demonstrate that the proposed method outperforms all existing approaches in Fourier phase retrieval problems.