Abstract:Bone non-union is among the most severe complications associated with trauma surgery, occurring in 10-30% of cases after long bone fractures. Treating non-unions requires a high level of surgical expertise and often involves multiple revision surgeries, sometimes even leading to amputation. Thus, more accurate prognosis is crucial for patient well-being. Recent advances in machine learning (ML) hold promise for developing models to predict non-union healing, even when working with smaller datasets, a commonly encountered challenge in clinical domains. To demonstrate the effectiveness of ML in identifying candidates at risk of failed non-union healing, we applied three ML models (logistic regression, support vector machine, and XGBoost) to the clinical dataset TRUFFLE, which includes 797 patients with long bone non-union. The models provided prediction results with 70% sensitivity, and the specificities of 66% (XGBoost), 49% (support vector machine), and 43% (logistic regression). These findings offer valuable clinical insights because they enable early identification of patients at risk of failed non-union healing after the initial surgical revision treatment protocol.
Abstract:Parkinson's disease (PD) is a neurodegenerative disease with frequently changing motor symptoms where continuous symptom monitoring enables more targeted treatment. Classical time series classification (TSC) and deep learning techniques have limited performance for PD symptom monitoring using wearable accelerometer data because PD movement patterns are complex, but datasets are small. We investigate InceptionTime and RandOm Convolutional KErnel Transform (ROCKET) because they are state-of-the-art for TSC and promising for PD symptom monitoring: InceptionTime's high learning capacity is suited to modeling complex movement patterns while ROCKET is suited to small datasets. We used a random search to find the highest-scoring InceptionTime architecture and compared it to ROCKET with a ridge classifier and a multi-layer perceptron (MLP) on wrist motions of PD patients. We find that all approaches are suitable for estimating tremor severity and bradykinesia presence but struggle with detecting dyskinesia. ROCKET performs better for dyskinesia, whereas InceptionTime is slightly better for tremor and bradykinesia but has much higher variability in performance. Both outperform the MLP. In conclusion, both InceptionTime and ROCKET are suitable for continuous symptom monitoring, with the choice depending on the symptom of interest and desired robustness.