Abstract:This study explores the integration of Lamarckian system into evolutionary robotics (ER), comparing it with the traditional Darwinian model across various environments. By adopting Lamarckian principles, where robots inherit learned traits, alongside Darwinian learning without inheritance, we investigate adaptation in dynamic settings. Our research, conducted in six distinct environmental setups, demonstrates that Lamarckian systems outperform Darwinian ones in adaptability and efficiency, particularly in challenging conditions. Our analysis highlights the critical role of the interplay between controller \& morphological evolution and environment adaptation, with parent-offspring similarities and newborn \&survivors before and after learning providing insights into the effectiveness of trait inheritance. Our findings suggest Lamarckian principles could significantly advance autonomous system design, highlighting the potential for more adaptable and robust robotic solutions in complex, real-world applications. These theoretical insights were validated using real physical robots, bridging the gap between simulation and practical application.
Abstract:In the most extensive robot evolution systems, both the bodies and the brains of the robots undergo evolution and the brains of 'infant' robots are also optimized by a learning process immediately after 'birth'. This paper is concerned with the brain evolution mechanism in such a system. In particular, we compare four options obtained by combining asexual or sexual brain reproduction with Darwinian or Lamarckian evolution mechanisms. We conduct experiments in simulation with a system of evolvable modular robots on two different tasks. The results show that sexual reproduction of the robots' brains is preferable in the Darwinian framework, but the effect is the opposite in the Lamarckian system (both using the same infant learning method). Our experiments suggest that the overall best option is asexual reproduction combined with the Lamarckian framework, as it obtains better robots in terms of fitness than the other three. Considering the evolved morphologies, the different brain reproduction methods do not lead to differences. This result indicates that the morphology of the robot is mainly determined by the task and the environment, not by the brain reproduction methods.