Abstract:Exploration requires that robots reason about numerous ways to cover a space in response to dynamically changing conditions. However, in continuous domains there are potentially infinitely many options for robots to explore which can prove computationally challenging. How then should a robot efficiently optimize and choose exploration strategies to adopt? In this work, we explore this question through the use of variational inference to efficiently solve for distributions of coverage trajectories. Our approach leverages ergodic search methods to optimize coverage trajectories in continuous time and space. In order to reason about distributions of trajectories, we formulate ergodic search as a probabilistic inference problem. We propose to leverage Stein variational methods to approximate a posterior distribution over ergodic trajectories through parallel computation. As a result, it becomes possible to efficiently optimize distributions of feasible coverage trajectories for which robots can adapt exploration. We demonstrate that the proposed Stein variational ergodic search approach facilitates efficient identification of multiple coverage strategies and show online adaptation in a model-predictive control formulation. Simulated and physical experiments demonstrate adaptability and diversity in exploration strategies online.
Abstract:In this paper, we address the problem of safe trajectory planning for autonomous search and exploration in constrained, cluttered environments. Guaranteeing safe navigation is a challenging problem that has garnered significant attention. This work contributes a method that generates guaranteed safety-critical search trajectories in a cluttered environment. Our approach integrates safety-critical constraints using discrete control barrier functions (DCBFs) with ergodic trajectory optimization to enable safe exploration. Ergodic trajectory optimization plans continuous exploratory trajectories that guarantee full coverage of a space. We demonstrate through simulated and experimental results on a drone that our approach is able to generate trajectories that enable safe and effective exploration. Furthermore, we show the efficacy of our approach for safe exploration of real-world single- and multi- drone platforms.