Abstract:Tendon-driven robots, where one or more tendons under tension bend and manipulate a flexible backbone, can improve minimally invasive surgeries involving difficult-to-reach regions in the human body. Planning motions safely within constrained anatomical environments requires accuracy and efficiency in shape estimation and collision checking. Tendon robots that employ arbitrarily-routed tendons can achieve complex and interesting shapes, enabling them to travel to difficult-to-reach anatomical regions. Arbitrarily-routed tendon-driven robots have unintuitive nonlinear kinematics. Therefore, we envision clinicians leveraging an assistive interactive-rate motion planner to automatically generate collision-free trajectories to clinician-specified destinations during minimally-invasive surgical procedures. Standard motion-planning techniques cannot achieve interactive-rate motion planning with the current expensive tendon robot kinematic models. In this work, we present a 3-phase motion-planning system for arbitrarily-routed tendon-driven robots with a Precompute phase, a Load phase, and a Supervisory Control phase. Our system achieves an interactive rate by developing a fast kinematic model (over 1,000 times faster than current models), a fast voxel collision method (27.6 times faster than standard methods), and leveraging a precomputed roadmap of the entire robot workspace with pre-voxelized vertices and edges. In simulated experiments, we show that our motion-planning method achieves high tip-position accuracy and generates plans at 14.8 Hz on average in a segmented collapsed lung pleural space anatomical environment. Our results show that our method is 17,700 times faster than popular off-the-shelf motion planning algorithms with standard FK and collision detection approaches. Our open-source code is available online.
Abstract:Steerable needles are capable of accurately targeting difficult-to-reach clinical sites in the body. By bending around sensitive anatomical structures, steerable needles have the potential to reduce the invasiveness of many medical procedures. However, inserting these needles with curved trajectories increases the risk of tissue shearing due to large forces being exerted on the surrounding tissue by the needle's shaft. Such shearing can cause significant damage to surrounding tissue, potentially worsening patient outcomes. In this work, we derive a tissue and needle force model based on a Cosserat string formulation, which describes the normal forces and frictional forces along the shaft as a function of the planned needle path, friction parameters, and tip piercing force. We then incorporate this force model as a cost function in an asymptotically near-optimal motion planner and demonstrate the ability to plan motions that consider the tissue normal forces from the needle shaft during planning in a simulated steering environment and a simulated lung tumor biopsy scenario. By planning motions for the needle that aim to minimize the tissue normal force explicitly, our method plans needle paths that reduce the risk of tissue shearing while still reaching desired targets in the body.