Yanglet
Abstract:Companies, including market rivals, have long collaborated on the development of open source software (OSS), resulting in a tangle of co-operation and competition known as "open source co-opetition". While prior work investigates open source co-opetition in OSS projects that are hosted by vendor-neutral foundations, we have a limited understanding thereof in OSS projects that are hosted and governed by one company. Given their prevalence, it is timely to investigate open source co-opetition in such contexts. Towards this end, we conduct a mixed-methods analysis of three company-hosted OSS projects in the artificial intelligence (AI) industry: Meta's PyTorch (prior to its donation to the Linux Foundation), Google's TensorFlow, and Hugging Face's Transformers. We contribute three key findings. First, while the projects exhibit similar code authorship patterns between host and external companies (80%/20% of commits), collaborations are structured differently (e.g., decentralised vs. hub-and-spoke networks). Second, host and external companies engage in strategic, non-strategic, and contractual collaborations, with varying incentives and collaboration practices. Some of the observed collaborations are specific to the AI industry (e.g., hardware-software optimizations or AI model integrations), while others are typical of the broader software industry (e.g., bug fixing or task outsourcing). Third, single-vendor governance creates a power imbalance that influences open source co-opetition practices and possibilities, from the host company's singular decision-making power (e.g., the risk of license change) to their community involvement strategy (e.g., from over-control to over-delegation). We conclude with recommendations for future research.
Abstract:Companies claim to "democratise" artificial intelligence (AI) when they donate AI open source software (OSS) to non-profit foundations or release AI models, among others, but what does this term mean and why do they do it? As the impact of AI on society and the economy grows, understanding the commercial incentives behind AI democratisation efforts is crucial for ensuring these efforts serve broader interests beyond commercial agendas. Towards this end, this study employs a mixed-methods approach to investigate commercial incentives for 43 AI OSS donations to the Linux Foundation. It makes contributions to both research and practice. It contributes a taxonomy of both individual and organisational social, economic, and technological incentives for AI democratisation. In particular, it highlights the role of democratising the governance and control rights of an OSS project (i.e., from one company to open governance) as a structural enabler for downstream goals, such as attracting external contributors, reducing development costs, and influencing industry standards, among others. Furthermore, OSS donations are often championed by individual developers within companies, highlighting the importance of the bottom-up incentives for AI democratisation. The taxonomy provides a framework and toolkit for discerning incentives for other AI democratisation efforts, such as the release of AI models. The paper concludes with a discussion of future research directions.
Abstract:Open source developers have emerged as key actors in the political economy of artificial intelligence (AI), with open model development being recognised as an alternative to closed-source AI development. However, we still have a limited understanding of collaborative practices in open source AI. This paper responds to this gap with a three-part quantitative analysis of development activity on the Hugging Face (HF) Hub, a popular platform for building, sharing, and demonstrating models. First, we find that various types of activity across 348,181 model, 65,761 dataset, and 156,642 space repositories exhibit right-skewed distributions. Activity is extremely imbalanced between repositories; for example, over 70% of models have 0 downloads, while 1% account for 99% of downloads. Second, we analyse a snapshot of the social network structure of collaboration on models, finding that the community has a core-periphery structure, with a core of prolific developers and a majority of isolate developers (89%). Upon removing isolates, collaboration is characterised by high reciprocity regardless of developers' network positions. Third, we examine model adoption through the lens of model usage in spaces, finding that a minority of models, developed by a handful of companies, are widely used on the HF Hub. Overall, we find that various types of activity on the HF Hub are characterised by Pareto distributions, congruent with prior observations about OSS development patterns on platforms like GitHub. We conclude with a discussion of the implications of the findings and recommendations for (open source) AI researchers, developers, and policymakers.
Abstract:Governments are increasingly funding open source software (OSS) development to address concerns regarding software security, digital sovereignty, and national competitiveness in science and innovation. While announcements of governmental funding are generally well-received by OSS developers, we still have a limited understanding of how they evaluate the relative benefits and drawbacks of such funding compared to other types of funding. This paper explores this question through a case study on scikit-learn, a Python library for machine learning, whose funding combines research grants, commercial sponsorship, community donations, and a 32 million Euro grant from France's artificial intelligence strategy. Through 25 interviews with scikit-learn's maintainers and funders, this study makes two key contributions to research and practice. First, the study contributes novel findings about the design and implementation of a public-private funding model in an OSS project. It sheds light on the respective roles that public and private funders have played in supporting scikit-learn, and the processes and governance mechanisms employed by the maintainers to balance their funders' diverse interests and to safeguard community interests. Second, it offers practical recommendations. For OSS developer communities, it illustrates the benefits of a diversified funding model for balancing the merits and drawbacks of different funding sources and mitigating dependence on single funders. For companies, it serves as a reminder that sponsoring developers or OSS projects can significantly help maintainers, who often struggle with limited resources and towering workloads. For governments, it emphasises the importance of funding the maintenance of existing OSS in addition to funding the development of new software or features. The paper concludes with suggestions for future research.
Abstract:Generative AI (GAI) offers unprecedented possibilities but its commercialization has raised concerns about transparency, reproducibility, bias, and safety. Many "open-source" GAI models lack the necessary components for full understanding and reproduction, and some use restrictive licenses, a practice known as "openwashing." We propose the Model Openness Framework (MOF), a ranked classification system that rates machine learning models based on their completeness and openness, following principles of open science, open source, open data, and open access. The MOF requires specific components of the model development lifecycle to be included and released under appropriate open licenses. This framework aims to prevent misrepresentation of models claiming to be open, guide researchers and developers in providing all model components under permissive licenses, and help companies, academia, and hobbyists identify models that can be safely adopted without restrictions. Wide adoption of the MOF will foster a more open AI ecosystem, accelerating research, innovation, and adoption.