Abstract:This is the Proceedings of the Seventh Conference on Uncertainty in Artificial Intelligence, which was held in Los Angeles, CA, July 13-15, 1991
Abstract:This is the Proceedings of the Eighth Conference on Uncertainty in Artificial Intelligence, which was held in Stanford, CA, July 17-19, 1992
Abstract:A complete approach to reasoning under uncertainty requires support for incremental and interactive formulation and revision of, as well as reasoning with, models of the problem domain capable of representing our uncertainty. We present a hybrid reasoning scheme which combines symbolic and numeric methods for uncertainty management to provide efficient and effective support for each of these tasks. The hybrid is based on symbolic techniques adapted from Assumption-based Truth Maintenance systems (ATMS), combined with numeric methods adapted from the Dempster/Shafer theory of evidence, as extended in Baldwin's Support Logic Programming system. The hybridization is achieved by viewing an ATMS as a symbolic algebra system for uncertainty calculations. This technique has several major advantages over conventional methods for performing inference with numeric certainty estimates in addition to the ability to dynamically determine hypothesis spaces, including improved management of dependent and partially independent evidence, faster run-time evaluation of propositional certainties, the ability to query the certainty value of a proposition from multiple perspectives, and the ability to incrementally extend or revise domain models.
Abstract:Computational mechanisms for uncertainty management must support interactive and incremental problem formulation, inference, hypothesis testing, and decision making. However, most current uncertainty inference systems concentrate primarily on inference, and provide no support for the larger issues. We present a computational approach to uncertainty management which provides direct support for the dynamic, incremental aspect of this task, while at the same time permitting direct representation of the structure of evidential relationships. At the same time, we show that this approach responds to the modularity concerns of Heckerman and Horvitz [Heck87]. This paper emphasizes examples of the capabilities of this approach. Another paper [D'Am89] details the representations and algorithms involved.
Abstract:We present a generalization of the local expression language used in the Symbolic Probabilistic Inference (SPI) approach to inference in belief nets [1l, [8]. The local expression language in SPI is the language in which the dependence of a node on its antecedents is described. The original language represented the dependence as a single monolithic conditional probability distribution. The extended language provides a set of operators (*, +, and -) which can be used to specify methods for combining partial conditional distributions. As one instance of the utility of this extension, we show how this extended language can be used to capture the semantics, representational advantages, and inferential complexity advantages of the "noisy or" relationship.
Abstract:We report on an experimental investigation into opportunities for parallelism in beliefnet inference. Specifically, we report on a study performed of the available parallelism, on hypercube style machines, of a set of randomly generated belief nets, using factoring (SPI) style inference algorithms. Our results indicate that substantial speedup is available, but that it is available only through parallelization of individual conformal product operations, and depends critically on finding an appropriate factoring. We find negligible opportunity for parallelism at the topological, or clustering tree, level.
Abstract:Given a belief network with evidence, the task of finding the I most probable explanations (MPE) in the belief network is that of identifying and ordering the I most probable instantiations of the non-evidence nodes of the belief network. Although many approaches have been proposed for solving this problem, most work only for restricted topologies (i.e., singly connected belief networks). In this paper, we will present a new approach for finding I MPEs in an arbitrary belief network. First, we will present an algorithm for finding the MPE in a belief network. Then, we will present a linear time algorithm for finding the next MPE after finding the first MPE. And finally, we will discuss the problem of finding the MPE for a subset of variables of a belief network, and show that the problem can be efficiently solved by this approach.
Abstract:Propositional representation services such as truth maintenance systems offer powerful support for incremental, interleaved, problem-model construction and evaluation. Probabilistic inference systems, in contrast, have lagged behind in supporting this incrementality typically demanded by problem solvers. The problem, we argue, is that the basic task of probabilistic inference is typically formulated at too large a grain-size. We show how a system built around a smaller grain-size inference task can have the desired incrementality and serve as the basis for a low-level (propositional) probabilistic representation service.
Abstract:A BN2O network is a two level belief net in which the parent interactions are modeled using the noisy-or interaction model. In this paper we discuss application of the SPI local expression language to efficient inference in large BN2O networks. In particular, we show that there is significant structure, which can be exploited to improve over the Quickscore result. We further describe how symbolic techniques can provide information which can significantly reduce the computation required for computing all cause posterior marginals. Finally, we present a novel approximation technique with preliminary experimental results.
Abstract:Real-time Decision algorithms are a class of incremental resource-bounded [Horvitz, 89] or anytime [Dean, 93] algorithms for evaluating influence diagrams. We present a test domain for real-time decision algorithms, and the results of experiments with several Real-time Decision Algorithms in this domain. The results demonstrate high performance for two algorithms, a decision-evaluation variant of Incremental Probabilisitic Inference [D'Ambrosio 93] and a variant of an algorithm suggested by Goldszmidt, [Goldszmidt, 95], PK-reduced. We discuss the implications of these experimental results and explore the broader applicability of these algorithms.