Abstract:A fundamental issue in deep learning has been adversarial robustness. As these systems have scaled, such issues have persisted. Currently, large language models (LLMs) with billions of parameters suffer from adversarial attacks just like their earlier, smaller counterparts. However, the threat models have changed. Previously, having gray-box access, where input embeddings or output logits/probabilities were visible to the user, might have been reasonable. However, with the introduction of closed-source models, no information about the model is available apart from the generated output. This means that current black-box attacks can only utilize the final prediction to detect if an attack is successful. In this work, we investigate and demonstrate the potential of attack guidance, akin to using output probabilities, while having only black-box access in a classification setting. This is achieved through the ability to elicit confidence from the model. We empirically show that the elicited confidence is calibrated and not hallucinated for current LLMs. By minimizing the elicited confidence, we can therefore increase the likelihood of misclassification. Our new proposed paradigm demonstrates promising state-of-the-art results on three datasets across two models (LLaMA-3-8B-Instruct and Mistral-7B-Instruct-V0.3) when comparing our technique to existing hard-label black-box attack methods that introduce word-level substitutions.
Abstract:Language models (LMs) are indispensable tools for natural language processing tasks, but their vulnerability to adversarial attacks remains a concern. While current research has explored adversarial training techniques, their improvements to defend against word-level attacks have been limited. In this work, we propose a novel approach called Semantic Robust Defence (SemRoDe), a Macro Adversarial Training strategy to enhance the robustness of LMs. Drawing inspiration from recent studies in the image domain, we investigate and later confirm that in a discrete data setting such as language, adversarial samples generated via word substitutions do indeed belong to an adversarial domain exhibiting a high Wasserstein distance from the base domain. Our method learns a robust representation that bridges these two domains. We hypothesize that if samples were not projected into an adversarial domain, but instead to a domain with minimal shift, it would improve attack robustness. We align the domains by incorporating a new distance-based objective. With this, our model is able to learn more generalized representations by aligning the model's high-level output features and therefore better handling unseen adversarial samples. This method can be generalized across word embeddings, even when they share minimal overlap at both vocabulary and word-substitution levels. To evaluate the effectiveness of our approach, we conduct experiments on BERT and RoBERTa models on three datasets. The results demonstrate promising state-of-the-art robustness.