Texas A&M University Materials Science and Engineering Department
Abstract:Alloy design can be framed as a constraint-satisfaction problem. Building on previous methodologies, we propose equipping Gaussian Process Classifiers (GPCs) with physics-informed prior mean functions to model the boundaries of feasible design spaces. Through three case studies, we highlight the utility of informative priors for handling constraints on continuous and categorical properties. (1) Phase Stability: By incorporating CALPHAD predictions as priors for solid-solution phase stability, we enhance model validation using a publicly available XRD dataset. (2) Phase Stability Prediction Refinement: We demonstrate an in silico active learning approach to efficiently correct phase diagrams. (3) Continuous Property Thresholds: By embedding priors into continuous property models, we accelerate the discovery of alloys meeting specific property thresholds via active learning. In each case, integrating physics-based insights into the classification framework substantially improved model performance, demonstrating an efficient strategy for constraint-aware alloy design.
Abstract:Accelerated discovery in materials science demands autonomous systems capable of dynamically formulating and solving design problems. In this work, we introduce a novel framework that leverages Bayesian optimization over a problem formulation space to identify optimal design formulations in line with decision-maker preferences. By mapping various design scenarios to a multi attribute utility function, our approach enables the system to balance conflicting objectives such as ductility, yield strength, density, and solidification range without requiring an exact problem definition at the outset. We demonstrate the efficacy of our method through an in silico case study on a Mo-Nb-Ti-V-W alloy system targeted for gas turbine engine blade applications. The framework converges on a sweet spot that satisfies critical performance thresholds, illustrating that integrating problem formulation discovery into the autonomous design loop can significantly streamline the experimental process. Future work will incorporate human feedback to further enhance the adaptability of the system in real-world experimental settings.
Abstract:Materials design is a critical driver of innovation, yet overlooking the technological, economic, and environmental risks inherent in materials and their supply chains can lead to unsustainable and risk-prone solutions. To address this, we present a novel risk-aware design approach that integrates Supply-Chain Aware Design Strategies into the materials development process. This approach leverages existing language models and text analysis to develop a specialized model for predicting materials feedstock supply risk indices. To efficiently navigate the multi-objective, multi-constraint design space, we employ Batch Bayesian Optimization (BBO), enabling the identification of Pareto-optimal high entropy alloys (HEAs) that balance performance objectives with minimized supply risk. A case study using the MoNbTiVW system demonstrates the efficacy of our approach in four scenarios, highlighting the significant impact of incorporating supply risk into the design process. By optimizing for both performance and supply risk, we ensure that the developed alloys are not only high-performing but also sustainable and economically viable. This integrated approach represents a critical step towards a future where materials discovery and design seamlessly consider sustainability, supply chain dynamics, and comprehensive life cycle analysis.